论文标题

在FIB-SEM图像中基于学习的基于学习的识别

Deep learning-based identification of sub-nuclear structures in FIB-SEM images

论文作者

Gupta, Niraj, Roberts, Eric J., Pang, Song, Xu, C. Shan, Hess, Harald F., Wu, Fan, Dernburg, Abby, Jorgens, Danielle, Zwart, Petrus H., Kasinath, Vignesh

论文摘要

细胞的三维体积成像允许原位可视化,从而保留了对细胞过程的上下文见解。尽管机器学习方法最近取得了进步,但由于浅层对比度和特征检测的技术限制,对亚核结构的形态学分析已被证明具有挑战性。在这里,我们提出了一个卷积神经网络,是基于深度学习的监督方法,该方法可以鉴定出90%精度的亚核结构。我们使用聚焦离子束铣削与扫描电子显微镜相结合成像的秀丽隐杆线虫性腺开发并应用了该模型,从而准确鉴定和分割了所有亚核结构,包括整个染色体。我们深入讨论深度学习模型的体系结构,参数化和优化,并提供评估指标以评估网络预测的质量。最后,我们重点介绍了该模型的特定方面,该方面可以优化,以广泛应用于其他体积成像数据以及原位冷冻电子层析成像。

Three-dimensional volumetric imaging of cells allows for in situ visualization, thus preserving contextual insights into cellular processes. Despite recent advances in machine learning methods, morphological analysis of sub-nuclear structures have proven challenging due to both the shallow contrast profile and the technical limitation in feature detection. Here, we present a convolutional neural network, supervised deep learning-based approach which can identify sub-nuclear structures with 90% accuracy. We develop and apply this model to C. elegans gonads imaged using focused ion beam milling combined with scanning electron microscopy resulting in the accurate identification and segmentation of all sub-nuclear structures including entire chromosomes. We discuss in depth the architecture, parameterization, and optimization of the deep learning model, as well as provide evaluation metrics to assess the quality of the network prediction. Lastly, we highlight specific aspects of the model that can be optimized for its broad application to other volumetric imaging data as well as in situ cryo-electron tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源