论文标题

一个新型潜力,带有中心圆形轨道

A Novel Potential Featuring Off-Center Circular Orbits

论文作者

Olshanii, Maxim

论文摘要

在第1本书中,命题7,他的1687年哲学哲学哲学prinistia Mathematica的问题2中,艾萨克·牛顿(Isaac Newton)提出并回答了以下问题:让粒子在中央力量领域移动的轨道是一个偏离中心的圆圈。力的大小如何取决于粒子的位置?在本文中,我们确定只能在零能量下产生这种力的潜力。我们进一步绘制了零能源轨道的潜力,以在球体上有限能源轨道。这种双重性是古尔萨特(Goursat)从1887年开始的一般结果的一个特定实例。地图本身是一个反向立体投影,这一事实解释了感兴趣系统中零能轨道的循环。最后,我们确定了运动的附加组成部分 - 库仑问题中runge -lenz载体的类似物 - 这是导致我们问题中零能轨道的接近性。

In Book 1, Proposition 7, Problem 2 of his 1687 Philosophiae Naturalis Principia Mathematica, Isaac Newton poses and answers the following question: Let the orbit of a particle moving in a central force field be an off-center circle. How does the magnitude of the force depend on the position of the particle onthat circle? In this article, we identify a potential that can produce such a force, only at zero energy. We further map the zero-energy orbits in this potential to finite-energy free motion orbits on a sphere; such a duality is a particular instance of a general result by Goursat, from 1887. The map itself is an inverse stereographic projection, and this fact explains the circularity of the zero-energy orbits in the system of interest. Finally, we identify an additional integral of motion - an analogue of the Runge-Lenz vector in the Coulomb problem - that is responsible for the closeness of the zero-energy orbits in our problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源