论文标题
Exosgan和ExoAcgan:使用对抗训练算法的外球星导检测
ExoSGAN and ExoACGAN: Exoplanet Detection using Adversarial Training Algorithms
论文作者
论文摘要
系外行星的检测为发现新的可居住世界的发现打开了大门,并帮助我们了解行星的形成方式。 NASA的目的是找到类似地球的宜居行星,推出了开普勒太空望远镜及其后续任务K2。观察能力的进步增加了可用于研究的新鲜数据的范围,并且手动处理它们既耗时又困难。机器学习和深度学习技术可以极大地帮助降低人类以经济和公正的方式处理这些系外行星计划的现代工具所产生的大量数据的努力。但是,应注意精确地检测所有系外行星,同时最大程度地减少非外部星星星的错误分类。在本文中,我们利用了两种生成对抗网络的变体,即半监督的生成对抗网络和辅助分类器生成的对抗网络,在K2数据中检测传播系外行星。我们发现,这些模型的用法可能有助于用系外行星的恒星分类。我们的两种技术都能够在测试数据上以召回和精度为1.00的光曲线分类。我们的半监督技术有益于解决创建标签数据集的繁琐任务。
Exoplanet detection opens the door to the discovery of new habitable worlds and helps us understand how planets were formed. With the objective of finding earth-like habitable planets, NASA launched Kepler space telescope and its follow up mission K2. The advancement of observation capabilities has increased the range of fresh data available for research, and manually handling them is both time-consuming and difficult. Machine learning and deep learning techniques can greatly assist in lowering human efforts to process the vast array of data produced by the modern instruments of these exoplanet programs in an economical and unbiased manner. However, care should be taken to detect all the exoplanets precisely while simultaneously minimizing the misclassification of non-exoplanet stars. In this paper, we utilize two variations of generative adversarial networks, namely semi-supervised generative adversarial networks and auxiliary classifier generative adversarial networks, to detect transiting exoplanets in K2 data. We find that the usage of these models can be helpful for the classification of stars with exoplanets. Both of our techniques are able to categorize the light curves with a recall and precision of 1.00 on the test data. Our semi-supervised technique is beneficial to solve the cumbersome task of creating a labeled dataset.