论文标题

岩石行星的解剖结构是由快速卵石积聚的I。

Anatomy of rocky planets formed by rapid pebble accretion I. How icy pebbles determine the core fraction and FeO contents

论文作者

Johansen, Anders, Ronnet, Thomas, Schiller, Martin, Deng, Zhengbin, Bizzarro, Martin

论文摘要

我们提出了一系列论文,致力于建模岩石行星的积聚和分化,这些岩石行星在原球盘的寿命内通过卵石积聚形成。在第一篇论文中,我们关注积聚的冰如何确定地幔之间铁的分布(氧化的Feo和Feo $ _ {1.5} $)和核心(金属FE和FES)。我们发现,在$^{26} $ al的衰减加热后,富含冰块的材料的初始原始成分会导致大量的水流和行星内部粘土矿物的形成。金属铁溶解在液态水中,并在氧化磁铁矿Fe $ _3 $ o $ _4 $中沉淀。 $^{26} $进一步加热,使粘土在约900 K的温度下稳定。释放的超临界水从行星中弹出了整个水含量。在达到1,700 K的硅酸盐熔化温度后,行星可能会进一步分化为核心(主要由硫化铁FES制成)和一个具有较高氧化铁的地幔。我们建议小行星Vesta在地幔中的大量FEO分数是其原始冰含量的证词。我们认为Vesta是卵石积聚生长的原型人群中幸存的原型人群中的成员。我们表明,随着行星质量的增加(在序列的维斯塔 - 火星 - 地球)中,核心质量分数的增加和FEO含量的减少自然是由水冰线以外的陆地行星通过含铁的积聚而在金属形式中以内在氧化程度显着的。

We present a series of papers dedicated to modelling the accretion and differentiation of rocky planets that form by pebble accretion within the lifetime of the protoplanetary disc. In this first paper, we focus on how the accreted ice determines the distribution of iron between the mantle (oxidized FeO and FeO$_{1.5}$) and the core (metallic Fe and FeS). We find that an initial primitive composition of ice-rich material leads, upon heating by the decay of $^{26}$Al, to extensive water flow and the formation of clay minerals inside planetesimals. Metallic iron dissolves in liquid water and precipitates as oxidized magnetite Fe$_3$O$_4$. Further heating by $^{26}$Al destabilizes the clay at a temperature of around 900 K. The released supercritical water ejects the entire water content from the planetesimal. Upon reaching the silicate melting temperature of 1,700 K, planetesimals further differentiate into a core (made mainly of iron sulfide FeS) and a mantle with a high fraction of oxidized iron. We propose that the asteroid Vesta's significant FeO fraction in the mantle is a testimony of its original ice content. We consider Vesta to be a surviving member of the population of protoplanets from which Mars, Earth, and Venus grew by pebble accretion. We show that the increase in the core mass fraction and decrease in FeO contents with increasing planetary mass (in the sequence Vesta -- Mars -- Earth) is naturally explained by the growth of terrestrial planets outside of the water ice line through accretion of pebbles containing iron that was dominantly in metallic form with an intrinsically low oxidation degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源