论文标题
撑杆:舞蹈运动综合的磨损比赛数据集
BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis
论文作者
论文摘要
音频条件的舞蹈运动合成图的生成模型音乐特征舞蹈动作。训练模型将运动模式与音频模式相关联,通常没有明确的人体知识。这种方法取决于一些假设:强大的音乐舞蹈相关性,受控运动数据以及相对简单的姿势和运动。在所有现有的舞蹈运动综合数据集中都可以找到这些特征,并且实际上最近的方法可以取得良好的结果。我们引入了一个新的数据集,旨在挑战这些常见的假设,编译一组动态舞蹈序列,显示复杂的人类姿势。我们专注于具有杂技动作和纠结姿势的脱节。我们从红牛BC One竞赛视频中获取数据。由于舞蹈的复杂性以及多个移动的相机录制设置,因此很难从这些视频中估算人类关键点。我们采用了利用深度估计模型以及手动注释的混合标签管道,以降低的成本获得高质量的关键点序列。我们的努力产生了支架数据集,该数据集包含3个小时30分钟的密集注释姿势。我们在支撑上测试最先进的方法,在复杂序列上评估时显示了它们的局限性。我们的数据集可以很容易地促进舞蹈运动综合。随着复杂的姿势和迅速的动作,模型被迫超越学习方式与理性之间的映射,以更有效地了解身体结构和运动。
Generative models for audio-conditioned dance motion synthesis map music features to dance movements. Models are trained to associate motion patterns to audio patterns, usually without an explicit knowledge of the human body. This approach relies on a few assumptions: strong music-dance correlation, controlled motion data and relatively simple poses and movements. These characteristics are found in all existing datasets for dance motion synthesis, and indeed recent methods can achieve good results.We introduce a new dataset aiming to challenge these common assumptions, compiling a set of dynamic dance sequences displaying complex human poses. We focus on breakdancing which features acrobatic moves and tangled postures. We source our data from the Red Bull BC One competition videos. Estimating human keypoints from these videos is difficult due to the complexity of the dance, as well as the multiple moving cameras recording setup. We adopt a hybrid labelling pipeline leveraging deep estimation models as well as manual annotations to obtain good quality keypoint sequences at a reduced cost. Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses. We test state-of-the-art methods on BRACE, showing their limitations when evaluated on complex sequences. Our dataset can readily foster advance in dance motion synthesis. With intricate poses and swift movements, models are forced to go beyond learning a mapping between modalities and reason more effectively about body structure and movements.