论文标题

基于流动的视觉质量增强器,用于超分辨率磁共振光谱成像

Flow-based Visual Quality Enhancer for Super-resolution Magnetic Resonance Spectroscopic Imaging

论文作者

Dong, Siyuan, Hangel, Gilbert, Chen, Eric Z., Sun, Shanhui, Bogner, Wolfgang, Widhalm, Georg, You, Chenyu, Onofrey, John A., de Graaf, Robin, Duncan, James S.

论文摘要

磁共振光谱成像(MRSI)是量化体内代谢产物的重要工具,但是低空间分辨率限制了其临床应用。基于深度学习的超分辨率方法为改善MRSI的空间分辨率提供了有希望的结果,但是与实验可获得的高分辨率图像相比,超级分辨图像通常是模糊的。已经通过生成对抗网络进行了尝试,以提高图像视觉质量。在这项工作中,我们考虑了另一种类型的生成模型,即基于流的模型,与对抗网络相比,该模型的训练更稳定和可解释。具体而言,我们提出了一个基于流动的增强器网络,以提高超分辨率MRSI的视觉质量。与以前的基于流的模型不同,我们的增强器网络包含了来自其他图像模式(MRI)的解剖信息,并使用了可学习的基础分布。此外,我们施加指南丢失和数据一致性丢失,以鼓励网络在保持高忠诚度的同时生成高视觉质量的图像。从25名高级神经胶质瘤患者获得的1H-MRSI数据集上的实验表明,我们的增强剂网络的表现优于对抗网络和基线基线方法。我们的方法还允许视觉质量调整和不确定性估计。

Magnetic Resonance Spectroscopic Imaging (MRSI) is an essential tool for quantifying metabolites in the body, but the low spatial resolution limits its clinical applications. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but the super-resolved images are often blurry compared to the experimentally-acquired high-resolution images. Attempts have been made with the generative adversarial networks to improve the image visual quality. In this work, we consider another type of generative model, the flow-based model, of which the training is more stable and interpretable compared to the adversarial networks. Specifically, we propose a flow-based enhancer network to improve the visual quality of super-resolution MRSI. Different from previous flow-based models, our enhancer network incorporates anatomical information from additional image modalities (MRI) and uses a learnable base distribution. In addition, we impose a guide loss and a data-consistency loss to encourage the network to generate images with high visual quality while maintaining high fidelity. Experiments on a 1H-MRSI dataset acquired from 25 high-grade glioma patients indicate that our enhancer network outperforms the adversarial networks and the baseline flow-based methods. Our method also allows visual quality adjustment and uncertainty estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源