论文标题

可以证明在实例上调整弹性网

Provably tuning the ElasticNet across instances

论文作者

Balcan, Maria-Florina, Khodak, Mikhail, Sharma, Dravyansh, Talwalkar, Ameet

论文摘要

正规化理论中,一个重要的尚未解决的挑战是设置流行技术的正则化系数,例如Elasticnet,并具有一般可证明的保证。我们考虑了在多个问题实例中调整脊回归,套索和ElasticNet的正则化参数的问题,该设置既包含交叉验证和多任务超级参数优化”。我们获得了ElasticNet的新结构结果,该结果将损失作为调谐参数的函数作为具有代数边界的分段理性函数。我们使用它来结合正规损耗函数的结构复杂性,并显示概括性的保证,用于调整统计环境中的ElasticNet回归系数。我们还考虑了更具挑战性的在线学习环境,在该设置中,我们表现出相对于最佳参数对的平均预期遗憾。我们将结果进一步扩展到通过阈值回归拟合通过Ridge,Lasso或ElasticNet正式获得的调整分类算法。我们的结果是对于避免对数据分布的强烈假设的这类重要类别的第一类一般学习理论保证。此外,我们的保证既可以验证和流行信息标准目标。

An important unresolved challenge in the theory of regularization is to set the regularization coefficients of popular techniques like the ElasticNet with general provable guarantees. We consider the problem of tuning the regularization parameters of Ridge regression, LASSO, and the ElasticNet across multiple problem instances, a setting that encompasses both cross-validation and multi-task hyperparameter optimization. We obtain a novel structural result for the ElasticNet which characterizes the loss as a function of the tuning parameters as a piecewise-rational function with algebraic boundaries. We use this to bound the structural complexity of the regularized loss functions and show generalization guarantees for tuning the ElasticNet regression coefficients in the statistical setting. We also consider the more challenging online learning setting, where we show vanishing average expected regret relative to the optimal parameter pair. We further extend our results to tuning classification algorithms obtained by thresholding regression fits regularized by Ridge, LASSO, or ElasticNet. Our results are the first general learning-theoretic guarantees for this important class of problems that avoid strong assumptions on the data distribution. Furthermore, our guarantees hold for both validation and popular information criterion objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源