论文标题

来自各向同性的强迫湍流的湍流prandtl数字

Turbulent Prandtl number from isotropically forced turbulence

论文作者

Käpylä, Petri J., Singh, Nishant K.

论文摘要

湍流运动增强了大规模流和温度梯度的扩散。这种扩散通常通过湍流粘度($ν_{\ rm t} $)和湍流的热扩散率($χ_ {\ rm t} $)的系数来参数化,这些系数与它们的显微镜相似。我们通过在湍流上施加大规模速度和温度梯度并测量系统响应来计算湍流扩散系数。我们还使用允许强加梯度腐烂的实验确认结果。为了实现这一目标,我们使用弱压缩的三维流体动力模拟对各向同性强迫均匀的湍流。我们发现,动荡的粘度和热扩散及其比例的湍流prandtl数字,$ {\ rm pr} _ {\ rm t} =ν_ {\ rm t}/χ_ {\ rm t}/χ_ {\ rm t} $,接近高度reynolds和pecpeynolds and affer Assymptotic值。我们还没有在显微镜prandtl编号$ {\ rm pr} =ν/χ$上找到$ {\ rm pr} _ {\ rm t} $的显着依赖性。这些发现与$ k-ε$模型的结果形成鲜明对比,后者表明$ {\ rm pr} _ {\ rm t} $单调增加,而$ {\ rm pr} $单调增加。当前的结果与持续的辩论有关,例如,在非常低的$ {\ rm pr} $ sentell对流区域中的动荡流的性质。

Turbulent motions enhance the diffusion of large-scale flows and temperature gradients. Such diffusion is often parameterized by coefficients of turbulent viscosity ($ν_{\rm t}$) and turbulent thermal diffusivity ($χ_{\rm t}$) that are analogous to their microscopic counterparts. We compute the turbulent diffusion coefficients by imposing large-scale velocity and temperature gradients on a turbulent flow and measuring the response of the system. We also confirm our results using experiments where the imposed gradients are allowed to decay. To achieve this, we use weakly compressible three-dimensional hydrodynamic simulations of isotropically forced homogeneous turbulence. We find that the turbulent viscosity and thermal diffusion, as well as their ratio the turbulent Prandtl number, ${\rm Pr}_{\rm t} = ν_{\rm t}/χ_{\rm t}$, approach asymptotic values at sufficiently high Reynolds and Peclét numbers. We also do not find a significant dependence of ${\rm Pr}_{\rm t}$ on the microscopic Prandtl number ${\rm Pr} = ν/χ$. These findings are in stark contrast to results from the $k-ε$ model which suggests that ${\rm Pr}_{\rm t}$ increases monotonically with decreasing ${\rm Pr}$. The current results are relevant for the ongoing debate of, for example, the nature of the turbulent flows in the very low ${\rm Pr}$ regimes of stellar convection zones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源