论文标题

测试即将进行的IV期弱透镜调查的二次最大似然估计器

Testing Quadratic Maximum Likelihood estimators for forthcoming Stage-IV weak lensing surveys

论文作者

Maraio, Alessandro, Hall, Alex, Taylor, Andy

论文摘要

来自当前弱透镜调查的宇宙学参数的标题约束源自两点统计,即使在高斯领域,也已知在统计学上是统计学上的优势。我们研究了对高斯磁场最佳的二次最大可能性(QML)估计量的新快速实施的性能,以测试即将进行的弱透镜调查的伪CL估计器的性能,并通过更优化的方法量化增益。通过使用现实的调查几何形状,噪声水平和功率谱,我们发现,当使用最佳的QML估计器对伪CL估计器上的最佳QML估计器对最大的角度尺度上的最佳QML估计器时,恢复的电子模式频谱的统计数据的误差降低了约20%,而我们在最大的角度上发现了与bmoder的误差相关的大幅下降。这提高了能够通过B模型对即将进行的QML估计器提供的即将进行的调查的增强敏感性来限制新物理的前景。我们使用新的实施方法测试QML方法,该方法使用共轭分量和有限差分分化方法,从而导致最有效地实施全套QML估计器,从而使我们能够在使用现有代码的决议上处理昂贵的分辨率。此外,我们研究了暂停,B模式纯化的影响以及非高斯图对估计器统计特性的使用。我们的QML实施已公开可用,可以从GitHub访问。

Headline constraints on cosmological parameters from current weak lensing surveys are derived from two-point statistics that are known to be statistically sub-optimal, even in the case of Gaussian fields. We study the performance of a new fast implementation of the Quadratic Maximum Likelihood (QML) estimator, optimal for Gaussian fields, to test the performance of Pseudo-Cl estimators for upcoming weak lensing surveys and quantify the gain from a more optimal method. Through the use of realistic survey geometries, noise levels, and power spectra, we find that there is a decrease in the errors in the statistics of the recovered E-mode spectra to the level of ~20% when using the optimal QML estimator over the Pseudo-Cl estimator on the largest angular scales, while we find significant decreases in the errors associated with the B-modes for the QML estimator. This raises the prospects of being able to constrain new physics through the enhanced sensitivity of B-modes for forthcoming surveys that our implementation of the QML estimator provides. We test the QML method with a new implementation that uses conjugate-gradient and finite-differences differentiation methods resulting in the most efficient implementation of the full-sky QML estimator yet, allowing us to process maps at resolutions that are prohibitively expensive using existing codes. In addition, we investigate the effects of apodisation, B-mode purification, and the use of non-Gaussian maps on the statistical properties of the estimators. Our QML implementation is publicly available and can be accessed from GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源