论文标题
无限属性基本组的流形的简单量
Simplicial volume of manifolds with amenable fundamental group at infinity
论文作者
论文摘要
我们表明,对于$ n \ neq 1,4 $,在每一端,Infinity的Amenable基本组的内向驯服三角形$ n $ m $的简单卷是有限的;此外,我们表明,如果$π_1(m)$也是可正常的,那么$ m $的简单卷就消失了。我们表明,有限的经过限制的三角形流形的结果相同,这些歧管仅在无穷大处连接。
We show that for $n \neq 1,4$ the simplicial volume of an inward tame triangulable open $n$-manifold $M$ with amenable fundamental group at infinity at each end is finite; moreover, we show that if also $π_1(M)$ is amenable, then the simplicial volume of $M$ vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.