论文标题
高质量中子星磁盘流出的快速风味不稳定性
The Fast Flavor Instability in Hypermassive Neutron Star Disk Outflows
论文作者
论文摘要
我们检查了快速风味不稳定性(FFI)对中微子风味转化的影响,对中子恒星合并后形成的积聚磁盘的长期质量弹性。磁盘中的中微子的发射和吸收设置了磁盘喷射的组成,随后在扩展和冷却后会经历$ r $ $ - 过程的核合成。在这里,我们使用3种特种中微子泄漏方案和环环漏体方案,对可变寿命的高质量中子恒星(HMNS)进行28个时间依赖性,轴对称性,粘性粘液动力学模拟。通过修改吸收的中微子通量和温度,我们包括以参数方式进行的中微子风味转化,从而可以在各种风味平衡的情况下进行风味混合,并以一种旨在尊重Lepton-number保存中性中微子自我互动的Hamilteraction Hamilteraction hibteraction hibteraction Hamiltonian的方式。我们发现,对于迅速形成的黑洞(BH),由于中微子吸收的降低,FFI降低了磁盘流出的平均电子部分,这主要是由于味道混合而驱动的,主要是由电子中性中微子/抗中性氨基酸含量下降。对于长期寿命的HMN,磁盘排放出比BH的重量更高的Lepton中微子和重吸收的电子中微子,并且在风味混合时,磁通量下降的通量下降较小。所得的流出具有更宽的电子分数分布,更富含质子的峰,并且经历了更强的辐射驱动。具有中间HMN寿命的磁盘显示结果落在这两个限制之间。在大多数情况下,FFI对流出的影响是中等的,质量射出,平均速度和平均电子分数的变化$ \ sim 10 \%$,以及兰烷基/actinide质量分数的变化,最高为$ \ sim 2 $。
We examine the effect of neutrino flavor transformation by the fast flavor instability (FFI) on long-term mass ejection from accretion disks formed after neutron star mergers. Neutrino emission and absorption in the disk set the composition of the disk ejecta, which subsequently undergoes $r$-process nucleosynthesis upon expansion and cooling. Here we perform 28 time-dependent, axisymmetric, viscous-hydrodynamic simulations of accretion disks around hypermassive neutron stars (HMNSs) of variable lifetime, using a 3-species neutrino leakage scheme for emission and an annular-lightbulb scheme for absorption. We include neutrino flavor transformation due the FFI in a parametric way, by modifying the absorbed neutrino fluxes and temperatures, allowing for flavor mixing at various levels of flavor equilibration, and also in a way that aims to respect the lepton-number preserving symmetry of the neutrino self-interaction Hamiltonian. We find that for a promptly-formed black hole (BH), the FFI lowers the average electron fraction of the disk outflow due to a decrease in neutrino absorption, driven primarily by a drop in electron neutrino/antineutrino flux upon flavor mixing. For a long-lived HMNS, the disk emits more heavy lepton neutrinos and reabsorbs more electron neutrinos than for a BH, with a smaller drop in flux compensated by a higher neutrino temperature upon flavor mixing. The resulting outflow has a broader electron fraction distribution, a more proton-rich peak, and undergoes stronger radiative driving. Disks with intermediate HMNS lifetimes show results that fall in between these two limits. In most cases, the impact of the FFI on the outflow is moderate, with changes in mass ejection, average velocity, and average electron fraction of order $\sim 10\%$, and changes in the lanthanide/actinide mass fraction of up to a factor $\sim 2$.