论文标题

非阿布尔有限群的异常,通过COBORDISM

Anomalies of non-Abelian finite groups via cobordism

论文作者

Davighi, Joe, Gripaios, Ben, Lohitsiri, Nakarin

论文摘要

我们使用COBORDISM理论来分析4个时空维度中有限非亚伯对称性的异常。通过应用“异常相互作用”的方法,该方法利用$η$ invariant的函数和自然性,将异常的异常与其他(有限或紧凑型谎言)组的异常相关联,我们在许多示例中都在许多示例中得出许多示例,包括$ s_3 $ a $ a $ a $ a $ a $ a $ a $ a444。 $ \ mathrm {sl}(2,\ mathbb {f} _3)$。对于有限的阿贝尔群体,众所周知,通过组扩展,可以以对低能物理学没有影响的方式“截断”。我们将这个想法扩展到非亚伯式的对称性。例如,我们证明一个具有$ A_4 $对称性的系统可以使异常无异常,只有三分之一的费米斯通过传递给更大的对称性。作为另一个例子,我们发现使用$ \ mathrm {sl}(2,\ mathbb {f} _3 _3)$对称性的一种众所周知的夸克和轻顿群众模型是异常的,但是可以通过将对称性扩大到$ \ mathbb {z z}/3 $ extermension of Symortry来取消$ \ mathrm {sl}(2,\ mathbb {f} _3)$。

We use cobordism theory to analyse anomalies of finite non-abelian symmetries in 4 spacetime dimensions. By applying the method of `anomaly interplay', which uses functoriality of cobordism and naturality of the $η$-invariant to relate anomalies in a group of interest to anomalies in other (finite or compact Lie) groups, we derive the anomaly for every representation in many examples motivated by flavour physics, including $S_3$, $A_4$, $Q_8$, and $\mathrm{SL}(2,\mathbb{F}_3)$. In the case of finite abelian groups, it is well known that anomalies can be `truncated' in a way that has no effect on low-energy physics, by means of a group extension. We extend this idea to non-abelian symmetries. We show, for example, that a system with $A_4$ symmetry can be rendered anomaly-free, with only one-third as many fermions as naïvely required, by passing to a larger symmetry. As another example, we find that a well-known model of quark and lepton masses utilising the $\mathrm{SL}(2,\mathbb{F}_3)$ symmetry is anomalous, but that the anomaly can be cancelled by enlarging the symmetry to a $\mathbb{Z}/3$ extension of $\mathrm{SL}(2,\mathbb{F}_3)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源