论文标题

潮汐:使用Visuo-semantic常识的先验来整理新的房间

TIDEE: Tidying Up Novel Rooms using Visuo-Semantic Commonsense Priors

论文作者

Sarch, Gabriel, Fang, Zhaoyuan, Harley, Adam W., Schydlo, Paul, Tarr, Michael J., Gupta, Saurabh, Fragkiadaki, Katerina

论文摘要

我们介绍了泰德(Tidee),这是一种体现的代理,它根据学识渊博的常识对象和房间安排先验来整理一个无序场景。泰德(Tidee)探索家庭环境,检测到其自然位置的对象,侵入可见的对象上下文,将这些上下文定位在当前场景中,并重新定位对象。常识性先令在三个模块中编码:i)检测到非凡物体的视觉声音检测器,ii)对物体和空间关系的关联神经图记忆,该记忆可与对象重新定位进行合理的语义插座和表面表面表面,以及为了有效地探索对象的探索,以实现对象的搜索网络。我们测试了在AI2THOR模拟环境中整理混乱的场景的潮汐。 Tidee直接从像素和原始深度输入中执行任务,而没有事先观察到同一房间,仅依靠从单独的一组培训房屋中学到的先验。人类对由此产生的房间进行重组的评估表明,泰德(Tidee)的表现优于模型的烧蚀版本,这些版本不使用一个或多个常识性先验。在相关的房间重新安排基准测试中,该基准允许代理在重排之前查看目标状态,我们的模型的简化版本大大优于较大的差距。代码和数据可在项目网站上获得:https://tidee-agent.github.io/。

We introduce TIDEE, an embodied agent that tidies up a disordered scene based on learned commonsense object placement and room arrangement priors. TIDEE explores a home environment, detects objects that are out of their natural place, infers plausible object contexts for them, localizes such contexts in the current scene, and repositions the objects. Commonsense priors are encoded in three modules: i) visuo-semantic detectors that detect out-of-place objects, ii) an associative neural graph memory of objects and spatial relations that proposes plausible semantic receptacles and surfaces for object repositions, and iii) a visual search network that guides the agent's exploration for efficiently localizing the receptacle-of-interest in the current scene to reposition the object. We test TIDEE on tidying up disorganized scenes in the AI2THOR simulation environment. TIDEE carries out the task directly from pixel and raw depth input without ever having observed the same room beforehand, relying only on priors learned from a separate set of training houses. Human evaluations on the resulting room reorganizations show TIDEE outperforms ablative versions of the model that do not use one or more of the commonsense priors. On a related room rearrangement benchmark that allows the agent to view the goal state prior to rearrangement, a simplified version of our model significantly outperforms a top-performing method by a large margin. Code and data are available at the project website: https://tidee-agent.github.io/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源