论文标题
通过自我训练和最近的邻居信息进行测试时间适应
Test-Time Adaptation via Self-Training with Nearest Neighbor Information
论文作者
论文摘要
测试时间适应(TTA)旨在仅使用在线未标记的测试数据调整训练有素的分类器,而无需与培训程序有关的任何信息。大多数现有的TTA方法使用分类器对测试数据的预测作为伪标签。但是,在测试时间域的变化下,无法保证伪标签的准确性,因此TTA方法经常在适应的分类器处遇到性能降解。为了克服这一限制,我们提出了一种新型的测试时间适应方法,称为通过与最近的邻居信息(tast)进行自我训练的测试时间适应,该方法由以下程序组成:(1)在训练有素的特征提取器的顶部添加了可训练的适应模块; (2)使用最近的邻居信息新定义了测试数据的伪标签分布; (3)在测试时间内仅训练这些模块几次,以匹配最近基于邻居的伪标签分布和测试数据的基于原型的类分布; (4)使用这些模块的平均预测类分布来预测测试数据的标签。伪标签的生成基于基本直觉,即测试数据及其在嵌入空间中最近的邻居可能在域移位下共享相同的标签。通过利用多个随机初始初始初始化的适应模块,TAST提取了使用最近的邻居信息在域移位下分类的有用信息。 TAST在两项标准基准任务,域概括,即VLC,PAC,OfficeHome和TerrainCognita以及图像腐败,尤其是CIFAR-10/100C上,TAST显示出比最先进的TTA方法更好的性能。
Test-time adaptation (TTA) aims to adapt a trained classifier using online unlabeled test data only, without any information related to the training procedure. Most existing TTA methods adapt the trained classifier using the classifier's prediction on the test data as pseudo-label. However, under test-time domain shift, accuracy of the pseudo labels cannot be guaranteed, and thus the TTA methods often encounter performance degradation at the adapted classifier. To overcome this limitation, we propose a novel test-time adaptation method, called Test-time Adaptation via Self-Training with nearest neighbor information (TAST), which is composed of the following procedures: (1) adds trainable adaptation modules on top of the trained feature extractor; (2) newly defines a pseudo-label distribution for the test data by using the nearest neighbor information; (3) trains these modules only a few times during test time to match the nearest neighbor-based pseudo label distribution and a prototype-based class distribution for the test data; and (4) predicts the label of test data using the average predicted class distribution from these modules. The pseudo-label generation is based on the basic intuition that a test data and its nearest neighbor in the embedding space are likely to share the same label under the domain shift. By utilizing multiple randomly initialized adaptation modules, TAST extracts useful information for the classification of the test data under the domain shift, using the nearest neighbor information. TAST showed better performance than the state-of-the-art TTA methods on two standard benchmark tasks, domain generalization, namely VLCS, PACS, OfficeHome, and TerraIncognita, and image corruption, particularly CIFAR-10/100C.