论文标题

PLD-SLAM:使用点和线段的实时视觉大满贯在动态场景中

PLD-SLAM: A Real-Time Visual SLAM Using Points and Line Segments in Dynamic Scenes

论文作者

Zhang, BaoSheng

论文摘要

在本文中,我们考虑了视觉同时定位和映射的实际应用(SLAM)的问题。随着技术在广泛的范围中的普及和应用,SLAM系统的实用性已成为一个新的热门话题,此后的准确性和鲁棒性(例如,如何保持系统的稳定性并实现了低文本和动态环境中的准确姿势估计),以及如何在实际的场景中列出了系统的范围,以及如何改善该系统的预测,以及如何改善该系统的预测,以及如何改善该系统的普遍性,等等。和线路功能,并避免在高度动态的环境中动态对象的影响。我们还提出了一种新型的全局灰色相似性(GGS)算法,以实现合理的钥匙扣选择和有效的环闭合检测(LCD)。 PLD-SLAM受益于GG,可以在大多数真实场景中实现实时准确的姿势估计,而无需预先训练和加载巨大的功能词典模型。为了验证拟议系统的性能,我们将其与公共数据集Kitti,Euroc MAV和我们提供的室内立体声数据集上的现有最新方法(SOTA)方法进行了比较。实验表明,PLD-SLAM在大多数情况下确保了稳定性和准确性,在大多数情况下都具有更好的实时性能。此外,通过分析GGS的实验结果,我们可以发现它在关键帧选择和LCD中具有出色的性能。

In this paper, we consider the problems in the practical application of visual simultaneous localization and mapping (SLAM). With the popularization and application of the technology in wide scope, the practicability of SLAM system has become a new hot topic after the accuracy and robustness, e.g., how to keep the stability of the system and achieve accurate pose estimation in the low-texture and dynamic environment, and how to improve the universality and real-time performance of the system in the real scenes, etc. This paper proposes a real-time stereo indirect visual SLAM system, PLD-SLAM, which combines point and line features, and avoid the impact of dynamic objects in highly dynamic environments. We also present a novel global gray similarity (GGS) algorithm to achieve reasonable keyframe selection and efficient loop closure detection (LCD). Benefiting from the GGS, PLD-SLAM can realize real-time accurate pose estimation in most real scenes without pre-training and loading a huge feature dictionary model. To verify the performance of the proposed system, we compare it with existing state-of-the-art (SOTA) methods on the public datasets KITTI, EuRoC MAV, and the indoor stereo datasets provided by us, etc. The experiments show that the PLD-SLAM has better real-time performance while ensuring stability and accuracy in most scenarios. In addition, through the analysis of the experimental results of the GGS, we can find it has excellent performance in the keyframe selection and LCD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源