论文标题
开放视频数据共享在发展和行为科学中
Open video data sharing in developmental and behavioural science
论文作者
论文摘要
视频录制是一种广泛使用的方法,用于记录研究和临床实践中的婴儿和儿童行为。由于机密性的道德问题,尽管需要共享的大型数据集的需求仍在增加,因此很少共享视频数据。涉及基于数据驱动的计算机的方法,例如筛选工具以补充临床评估时,这种需求更加必要。要在遵守隐私保护规则的同时共享数据,一个关键的问题会出现数据去识别的努力是否减少数据实用性?我们通过展示PrechTL的一般运动评估(GMA)来解决这个问题,该评估是一种既定的,全球实用的基于视频的诊断工具,用于早期婴儿期,用于检测神经系统缺陷,例如大脑麻痹。迄今为止,尚无针对婴儿运动分析的共享专家注销的大数据存储库。这样的数据集将大大受益于人类评估者的培训和重新校准以及基于计算机的方法的发展。在当前的研究中,来自前瞻性纵向婴儿队列的序列总共有19451年可用的通用运动视频片段被随机选择用于人类的临床推理和基于计算机的分析。我们首次证明,通过脸部视频录制的伪造是一种可行的方法。视频修复不影响人类评估者或计算机视觉方法的分类精度,这表明有足够易于的解决方案用于共享运动视频数据。我们呼吁进一步探索有效和隐私规则的方法,以在运动评估以外的科学和临床领域去识别视频数据。这些方法应使共享并将独立视频数据集合并到大型数据库中,以提高科学和公共卫生。
Video recording is a widely used method for documenting infant and child behaviours in research and clinical practice. Video data has rarely been shared due to ethical concerns of confidentiality, although the need of shared large-scaled datasets remains increasing. This demand is even more imperative when data-driven computer-based approaches are involved, such as screening tools to complement clinical assessments. To share data while abiding by privacy protection rules, a critical question arises whether efforts at data de-identification reduce data utility? We addressed this question by showcasing the Prechtl's general movements assessment (GMA), an established and globally practised video-based diagnostic tool in early infancy for detecting neurological deficits, such as cerebral palsy. To date, no shared expert-annotated large data repositories for infant movement analyses exist. Such datasets would massively benefit training and recalibration of human assessors and the development of computer-based approaches. In the current study, sequences from a prospective longitudinal infant cohort with a total of 19451 available general movements video snippets were randomly selected for human clinical reasoning and computer-based analysis. We demonstrated for the first time that pseudonymisation by face-blurring video recordings is a viable approach. The video redaction did not affect classification accuracy for either human assessors or computer vision methods, suggesting an adequate and easy-to-apply solution for sharing movement video data. We call for further explorations into efficient and privacy rule-conforming approaches for deidentifying video data in scientific and clinical fields beyond movement assessments. These approaches shall enable sharing and merging stand-alone video datasets into large data pools to advance science and public health.