论文标题
gessure-强大的面部认证启用了动态手势识别GUI应用
GesSure- A Robust Face-Authentication enabled Dynamic Gesture Recognition GUI Application
论文作者
论文摘要
使用物理互动设备(如小鼠和键盘)阻碍了自然主义的人机相互作用,并增加了大流行期间表面接触的可能性。现有的手势识别系统不具有用户身份验证,因此使其不可靠。当前手势识别技术中的静态手势会引入较长的适应期并降低用户的兼容性。我们的技术非常重视用户识别和安全。我们使用有意义且相关的手势进行任务操作,从而获得更好的用户体验。本文旨在设计一个强大的,具有面部验证的手势识别系统,该系统利用图形用户界面,主要通过用户识别和授权专注于安全性。面部模型使用mtcnn和faceNet验证用户,我们的LSTM-CNN体系结构以识别手势,并以五类的手势获得了95%的精度。通过我们的研究开发的原型已成功执行了上下文依赖性任务,例如保存,打印,控制视频播放器操作和退出,以及无上下文的操作系统任务,例如睡眠,关闭和直观地解锁。我们的应用程序和数据集可作为开源。
Using physical interactive devices like mouse and keyboards hinders naturalistic human-machine interaction and increases the probability of surface contact during a pandemic. Existing gesture-recognition systems do not possess user authentication, making them unreliable. Static gestures in current gesture-recognition technology introduce long adaptation periods and reduce user compatibility. Our technology places a strong emphasis on user recognition and safety. We use meaningful and relevant gestures for task operation, resulting in a better user experience. This paper aims to design a robust, face-verification-enabled gesture recognition system that utilizes a graphical user interface and primarily focuses on security through user recognition and authorization. The face model uses MTCNN and FaceNet to verify the user, and our LSTM-CNN architecture for gesture recognition, achieving an accuracy of 95% with five classes of gestures. The prototype developed through our research has successfully executed context-dependent tasks like save, print, control video-player operations and exit, and context-free operating system tasks like sleep, shut-down, and unlock intuitively. Our application and dataset are available as open source.