论文标题

通过自我监督的深神经网络减少多个宁静的斑点

Multi-temporal speckle reduction with self-supervised deep neural networks

论文作者

Meraoumia, Inès, Dalsasso, Emanuele, Denis, Loïc, Abergel, Rémy, Tupin, Florence

论文摘要

斑点过滤通常是分析合成孔径雷达(SAR)图像的先决条件。在单像幻想的领域取得了巨大的进步。最新技术依靠深神经网络来恢复SAR图像特有的各种结构和纹理。 SAR图像的时间序列的可用性通过在同一区域结合不同的斑点实现来改善斑点过滤的可能性。深度神经网络的监督培训需要无基真斑点图像。这样的图像只能通过某种平均,空间或时间整合间接获得,并且不完美。鉴于可以通过多阶段斑点滤波到达非常高质量的恢复的潜力,因此需要规避地面真相图像的局限性。我们将最新的自我监督训练策略扩展到了称为Merlin的单位复杂SAR图像,以进行多阶梯滤波。这需要对空间和时间维度以及复杂幅度的真实组件和虚构组件之间的统计依赖性来源进行建模。使用模拟斑点上的数据集进行定量分析表明,当包括其他SAR图像时,斑点减少了。然后,将我们的方法应用于Terrasar-X图像的堆栈,并显示出优于竞争的多阶段斑点过滤方法。训练有素的模型的代码可在LTCI实验室图像团队的Gitlab,TélécomParisInstitut Polytechnique de Paris(https://gitlab.telecom-paris.fr/ring/ring/multi-temporal-merlin/)中免费提供。

Speckle filtering is generally a prerequisite to the analysis of synthetic aperture radar (SAR) images. Tremendous progress has been achieved in the domain of single-image despeckling. Latest techniques rely on deep neural networks to restore the various structures and textures peculiar to SAR images. The availability of time series of SAR images offers the possibility of improving speckle filtering by combining different speckle realizations over the same area. The supervised training of deep neural networks requires ground-truth speckle-free images. Such images can only be obtained indirectly through some form of averaging, by spatial or temporal integration, and are imperfect. Given the potential of very high quality restoration reachable by multi-temporal speckle filtering, the limitations of ground-truth images need to be circumvented. We extend a recent self-supervised training strategy for single-look complex SAR images, called MERLIN, to the case of multi-temporal filtering. This requires modeling the sources of statistical dependencies in the spatial and temporal dimensions as well as between the real and imaginary components of the complex amplitudes. Quantitative analysis on datasets with simulated speckle indicates a clear improvement of speckle reduction when additional SAR images are included. Our method is then applied to stacks of TerraSAR-X images and shown to outperform competing multi-temporal speckle filtering approaches. The code of the trained models is made freely available on the Gitlab of the IMAGES team of the LTCI Lab, Télécom Paris Institut Polytechnique de Paris (https://gitlab.telecom-paris.fr/ring/multi-temporal-merlin/).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源