论文标题

部分可观测时空混沌系统的无模型预测

Learning Relaxation for Multigrid

论文作者

Kuznichov, Dmitry

论文摘要

在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。仅最近引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑了使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是在这种情况下尚未受到很多关注的Multigrid算法的重要组成部分。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4color Gaussseidel smoothorts。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大型网格上的多机算法的收敛速率。

During the last decade, Neural Networks (NNs) have proved to be extremely effective tools in many fields of engineering, including autonomous vehicles, medical diagnosis and search engines, and even in art creation. Indeed, NNs often decisively outperform traditional algorithms. One area that is only recently attracting significant interest is using NNs for designing numerical solvers, particularly for discretized partial differential equations. Several recent papers have considered employing NNs for developing multigrid methods, which are a leading computational tool for solving discretized partial differential equations and other sparse-matrix problems. We extend these new ideas, focusing on so-called relaxation operators (also called smoothers), which are an important component of the multigrid algorithm that has not yet received much attention in this context. We explore an approach for using NNs to learn relaxation parameters for an ensemble of diffusion operators with random coefficients, for Jacobi type smoothers and for 4Color GaussSeidel smoothers. The latter yield exceptionally efficient and easy to parallelize Successive Over Relaxation (SOR) smoothers. Moreover, this work demonstrates that learning relaxation parameters on relatively small grids using a two-grid method and Gelfand's formula as a loss function can be implemented easily. These methods efficiently produce nearly-optimal parameters, thereby significantly improving the convergence rate of multigrid algorithms on large grids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源