论文标题

耦合的SIS双病毒模型的建模和分析

Modeling and Analysis of a Coupled SIS Bi-Virus Model

论文作者

Gracy, Sebin, Paré, Philip E., Liu, Ji, Sandberg, Henrik, Beck, Carolyn L., Johansson, Karl Henrik, Başar, Tamer

论文摘要

本文处理的是,在一个人群中存在两种病毒(例如病毒1和病毒2)并存,并且它们不一定是互斥的,因为从一种病毒引起的感染并不排除另一个病毒同时感染的可能性。我们从4N州马尔可夫链模型开发了耦合的双病毒易感感染感染(SIS)模型,其中n是人群中代理的数量(即个体或子人群)。我们确定了两种病毒最终死亡的足够条件,并且有足够的条件,可以使每个病毒的地方均衡的存在,独特性和渐近稳定性。我们建立了足够的条件和多种必要条件,用于每种病毒的局部指数收敛到边界平衡(即一种病毒持续存在,另一种病毒死亡)。在对愈合率的轻度假设下,我们表明不能存在共存的平衡,在每个节点中,只有病毒1感染的非零分数;仅由病毒2感染的非零馏分;但是,没有病毒1和2感染的部分。同样,假设愈合率严格呈阳性,这是一个并存的平衡,在每个节点中,对于病毒1和2感染了一个非零的馏分,但不存在仅病毒1(sept。virus2)感染的分数。此外,我们为存在某些其他类型的共存平衡提供了必要条件。我们表明,与竞争性Bivirus模型不同,耦合的Bivirus模型不是单调。最后,我们使用一组深入的深入模拟来说明我们的理论发现。

The paper deals with the setting where two viruses (say virus 1 and virus 2) coexist in a population, and they are not necessarily mutually exclusive, in the sense that infection due to one virus does not preclude the possibility of simultaneous infection due to the other. We develop a coupled bi-virus susceptible-infected-susceptible (SIS) model from a 4n-state Markov chain model, where n is the number of agents (i.e., individuals or subpopulation) in the population. We identify a sufficient condition for both viruses to eventually die out, and a sufficient condition for the existence, uniqueness and asymptotic stability of the endemic equilibrium of each virus. We establish a sufficient condition and multiple necessary conditions for local exponential convergence to the boundary equilibrium (i.e., one virus persists, the other one dies out) of each virus. Under mild assumptions on the healing rate, we show that there cannot exist a coexisting equilibrium where for each node there is a nonzero fraction infected only by virus 1; a nonzero fraction infected only by virus 2; but no fraction that is infected by both viruses 1 and 2. Likewise, assuming that healing rates are strictly positive, a coexisting equilibrium where for each node there is a nonzero fraction infected by both viruses 1 and 2, but no fraction is infected only by virus 1 (resp. virus 2) does not exist. Further, we provide a necessary condition for the existence of certain other kinds of coexisting equilibria. We show that, unlike the competitive bivirus model, the coupled bivirus model is not monotone. Finally, we illustrate our theoretical findings using an extensive set of in-depth simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源