论文标题
Hermite操作员的Bochner-Riesz运营商的换向器
The commutators of Bochner-Riesz Operators for Hermite operator
论文作者
论文摘要
在本文中,我们研究了换向器$ [b,s_r^δ(h)](f)= bs_r^δ(h)f-s_r^δ(h)(h)(h)(bf)$ bmo函数$ b $和bochner-riesz的意思是$ s_r^Δ(bf)$ s_r^use $ s_r^f $ s $ for HerSATE $ hersator $ $ \ mathbb {r}^n $,$ n \ geq2 $。我们表明,如果$δ>δ(q)= n(1/q -1/2)-1/2 $,则换向器$ [b,s_r^δ(h)] $在$ l^p(\ m athbb {r}^n)$上时,每当$ q <q <q'$和$ q <q'$和$ 1 \ leq q q \ leq q \ leq q \ leq leq 2n/(n leq 2n/(n+2)。
In this paper, we study the $L^p$-boundedness of the commutator $[b, S_R^δ(H)](f) = bS_R^δ(H) f - S_R^δ(H)(bf)$ of a BMO function $b$ and the Bochner-Riesz means $S_R^δ(H)$ for Hermite operator $H=-Δ+|x|^2$ on $\mathbb{R}^n$, $n\geq2$. We show that if $δ>δ(q)=n(1/q -1/2)- 1/2$, the commutator $[b,S_R^δ(H)]$ is bounded on $L^p(\mathbb{R}^n)$ whenever $q<p<q'$ and $1\leq q\leq 2n/(n+2)$.