论文标题

从多标签学习到跨域转移:一种模型不合时宜的方法

From Multi-label Learning to Cross-Domain Transfer: A Model-Agnostic Approach

论文作者

Read, Jesse

论文摘要

在多标签学习中,单个数据点与多个目标标签相关联的多任务学习的特定情况,在文献中广泛假定,为了获得最佳准确性,应明确建模标签之间的依赖性。这个前提导致了提供技术来学习和预测标签的方法的扩散,例如,一个标签的预测会影响对其他标签的预测。即使现在人们承认,在许多情况下,最佳性能并不需要一种依赖模型,但在某些情况下,这种模型继续超越独立模型,这暗示了其性能的替代解释,而不是标签依赖性,而文献直到最近才开始解开。利用并扩展了最近的发现,我们将多标签学习的原始前提置于其头上,并在任务标签之间没有任何可衡量的依赖性的情况下特别解决联合模型的问题;例如,当任务标签来自单独的问题域时。我们将洞察力从这项研究转移到建立转移学习方法,该方法挑战了长期以来的假设,即任务的可转移性来自源和目标域或模型之间相似性的测量。这使我们能够设计和测试一种传输学习方法,该方法是模型驱动的,而不是纯数据驱动的方法,此外,它是黑匣子和模型不可知的(可以考虑任何基本模型类)。我们表明,从本质上讲,我们可以根据源模型容量创建任务依赖性。我们获得的结果具有重要的含义,并在多标签和转移学习领域为将来的工作提供了明确的方向。

In multi-label learning, a particular case of multi-task learning where a single data point is associated with multiple target labels, it was widely assumed in the literature that, to obtain best accuracy, the dependence among the labels should be explicitly modeled. This premise led to a proliferation of methods offering techniques to learn and predict labels together, for example where the prediction for one label influences predictions for other labels. Even though it is now acknowledged that in many contexts a model of dependence is not required for optimal performance, such models continue to outperform independent models in some of those very contexts, suggesting alternative explanations for their performance beyond label dependence, which the literature is only recently beginning to unravel. Leveraging and extending recent discoveries, we turn the original premise of multi-label learning on its head, and approach the problem of joint-modeling specifically under the absence of any measurable dependence among task labels; for example, when task labels come from separate problem domains. We shift insights from this study towards building an approach for transfer learning that challenges the long-held assumption that transferability of tasks comes from measurements of similarity between the source and target domains or models. This allows us to design and test a method for transfer learning, which is model driven rather than purely data driven, and furthermore it is black box and model-agnostic (any base model class can be considered). We show that essentially we can create task-dependence based on source-model capacity. The results we obtain have important implications and provide clear directions for future work, both in the areas of multi-label and transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源