论文标题

时空实时异常行为检测,跟踪和识别的混合分类器

Hybrid Classifiers for Spatio-temporal Real-time Abnormal Behaviors Detection, Tracking, and Recognition in Massive Hajj Crowds

论文作者

Alafif, Tarik, Hadi, Anas, Allahyani, Manal, Alzahrani, Bander, Alhothali, Areej, Alotaibi, Reem, Barnawi, Ahmed

论文摘要

各个异常行为因人群的大小,上下文和场景而异。当检测,跟踪和认可具有异常行为的人时,诸如部分阻塞,模糊,大数字异常行为和摄像机的挑战发生在大规模的人群中。在本文中,我们的贡献是双重的。首先,我们介绍了一个注释和标记的大规模人群异常行为hajj数据集(hajjv2)。其次,我们提出了两种混合卷积神经网络(CNN)和随机森林(RFS)的两种方法,以检测和识别小型和大型大型人群视频中的时空异常行为。在小型人群视频中,对Resnet-50预训练的CNN模型进行了微调,以验证空间域中的每个帧是正常还是异常。如果观察到异常行为,则使用基于运动的个体检测方法基于角链光流的大小和方向来定位和跟踪具有异常行为的个体。大型人群视频中使用了Kalman过滤器,以预测和跟踪随后的帧中被检测到的人。然后,将均值,方差和标准偏差统计特征计算出来并馈送给RF,以对时间域中的行为异常行为进行分类。在大规模的人群中,我们使用Yolov2对象检测技术微调Resnet-50模型,以检测空间域中行为异常的个体。

Individual abnormal behaviors vary depending on crowd sizes, contexts, and scenes. Challenges such as partial occlusions, blurring, large-number abnormal behavior, and camera viewing occur in large-scale crowds when detecting, tracking, and recognizing individuals with abnormal behaviors. In this paper, our contribution is twofold. First, we introduce an annotated and labeled large-scale crowd abnormal behaviors Hajj dataset (HAJJv2). Second, we propose two methods of hybrid Convolutional Neural Networks (CNNs) and Random Forests (RFs) to detect and recognize Spatio-temporal abnormal behaviors in small and large-scales crowd videos. In small-scale crowd videos, a ResNet-50 pre-trained CNN model is fine-tuned to verify whether every frame is normal or abnormal in the spatial domain. If anomalous behaviors are observed, a motion-based individuals detection method based on the magnitudes and orientations of Horn-Schunck optical flow is used to locate and track individuals with abnormal behaviors. A Kalman filter is employed in large-scale crowd videos to predict and track the detected individuals in the subsequent frames. Then, means, variances, and standard deviations statistical features are computed and fed to the RF to classify individuals with abnormal behaviors in the temporal domain. In large-scale crowds, we fine-tune the ResNet-50 model using YOLOv2 object detection technique to detect individuals with abnormal behaviors in the spatial domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源