论文标题
在最小重量类别中的最小倾斜复合物上
On minimal tilting complexes in highest weight categories
论文作者
论文摘要
我们解释了最高重量类别对象的最小倾斜复合物的结构,并详细研究了标准对象和简单对象的最小倾斜复合物。对于统一根部的复杂简单谎言代数,仿射kac-moody代数和量子组的某些类别的表示,我们将这些复合物中出现的多种不可分解的倾斜物体与Kazhdan-Lusztig Polynomials的系数联系起来。
We explain the construction of minimal tilting complexes for objects of highest weight categories and we study in detail the minimal tilting complexes for standard objects and simple objects. For certain categories of representations of complex simple Lie algebras, affine Kac-Moody algebras and quantum groups at roots of unity, we relate the multiplicities of indecomposable tilting objects appearing in the terms of these complexes to the coefficients of Kazhdan-Lusztig polynomials.