论文标题
动态3D场景分析按点云积累
Dynamic 3D Scene Analysis by Point Cloud Accumulation
论文作者
论文摘要
在自动驾驶汽车和移动机器人上使用的多光束LIDAR传感器可获得3D范围扫描的序列(“帧”)。由于有限的角度扫描分辨率和遮挡,每个框架都稀疏地覆盖了场景。稀疏性限制了语义分割或表面重建等下游过程的性能。幸运的是,当传感器移动时,帧将从一系列不同的观点捕获。这提供了互补的信息,并且当累积在共同的场景坐标框架中时,会产生更密集的采样和对基础3D场景的更完整覆盖。但是,扫描场景通常包含移动对象。这些对象上的点不能仅通过撤消扫描仪的自我运动来正确对齐。在本文中,我们探索了多帧点云积累,作为3D扫描序列的中级表示,并开发了一种利用室外街道场景的感应偏见的方法,包括其几何布局和对象级刚性。与最新的场景流估计器相比,我们提出的方法旨在使所有3D点在共同的参考框架中正确地对齐,从而正确积累了单个对象上的点。我们的方法大大减少了几个基准数据集上的对齐错误。此外,累积的点云使高级任务等高级任务(例如表面重建)。
Multi-beam LiDAR sensors, as used on autonomous vehicles and mobile robots, acquire sequences of 3D range scans ("frames"). Each frame covers the scene sparsely, due to limited angular scanning resolution and occlusion. The sparsity restricts the performance of downstream processes like semantic segmentation or surface reconstruction. Luckily, when the sensor moves, frames are captured from a sequence of different viewpoints. This provides complementary information and, when accumulated in a common scene coordinate frame, yields a denser sampling and a more complete coverage of the underlying 3D scene. However, often the scanned scenes contain moving objects. Points on those objects are not correctly aligned by just undoing the scanner's ego-motion. In the present paper, we explore multi-frame point cloud accumulation as a mid-level representation of 3D scan sequences, and develop a method that exploits inductive biases of outdoor street scenes, including their geometric layout and object-level rigidity. Compared to state-of-the-art scene flow estimators, our proposed approach aims to align all 3D points in a common reference frame correctly accumulating the points on the individual objects. Our approach greatly reduces the alignment errors on several benchmark datasets. Moreover, the accumulated point clouds benefit high-level tasks like surface reconstruction.