论文标题

灵魂网络:光谱CT图像重建的稀疏且低级的展开网络

SOUL-Net: A Sparse and Low-Rank Unrolling Network for Spectral CT Image Reconstruction

论文作者

Chen, Xiang, Xia, Wenjun, Yang, Ziyuan, Chen, Hu, Liu, Yan, Zhou, Jiliu, Zhang, Yi

论文摘要

光谱计算机断层扫描(CT)是一项新兴技术,它为物体内部生成多元素衰减图,并将传统的图像量扩展到4D形式。与基于能量集成检测器的传统CT相比,光谱CT可以充分利用光谱信息,从而导致高分辨率并提供准确的材料定量。已经提出了用于光谱CT重建的许多基于模型的迭代重建方法。但是,这些方法通常会遇到困难,例如艰苦的参数选择和昂贵的计算成本。另外,由于不同能量箱的图像相似性,光谱CT通常意味着强大的低级先验,这在当前迭代重建模型中已被广泛采用。奇异值阈值(SVT)是解决低级约束模型的有效算法。但是,SVT方法需要手动选择阈值,这可能会导致次优结果。为了缓解这些问题,在本文中,我们提出了一个稀疏且低级别的展开网络,用于光谱CT图像重建(SOUL-NET),该网络以数据驱动的方式学习了参数和阈值。此外,引入了一种基于泰勒扩展的神经网络反向传播方法,以提高数值稳定性。定性和定量结果表明,在细节保存和减少伪像的方面,所提出的方法优于几种代表性的最先进算法。

Spectral computed tomography (CT) is an emerging technology, that generates a multienergy attenuation map for the interior of an object and extends the traditional image volume into a 4D form. Compared with traditional CT based on energy-integrating detectors, spectral CT can make full use of spectral information, resulting in high resolution and providing accurate material quantification. Numerous model-based iterative reconstruction methods have been proposed for spectral CT reconstruction. However, these methods usually suffer from difficulties such as laborious parameter selection and expensive computational costs. In addition, due to the image similarity of different energy bins, spectral CT usually implies a strong low-rank prior, which has been widely adopted in current iterative reconstruction models. Singular value thresholding (SVT) is an effective algorithm to solve the low-rank constrained model. However, the SVT method requires manual selection of thresholds, which may lead to suboptimal results. To relieve these problems, in this paper, we propose a Sparse and lOw-rank UnroLling Network for spectral CT image reconstruction (SOUL-Net), that learns the parameters and thresholds in a data-driven manner. Furthermore, a Taylor expansion-based neural network backpropagation method is introduced to improve the numerical stability. The qualitative and quantitative results demonstrate that the proposed method outperforms several representative state-of-the-art algorithms in terms of detail preservation and artifact reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源