论文标题

深度加固学习用于制备热量子状态

Deep reinforcement learning for preparation of thermal and prethermal quantum states

论文作者

Baba, Shotaro Z., Yoshioka, Nobuyuki, Ashida, Yuto, Sagawa, Takahiro

论文摘要

我们提出了一种基于深钢筋学习的方法,该方法有效地制备了热或细头平衡中的量子多体纯状态。该方法基础的主要物理直觉是,依赖于平衡状态的典型性,可以通过仅关注少数几个局部可观察结果来有效地编码/提取有关平衡状态的信息。我们没有诉诸于采用量子状态保真度等昂贵的准备协议,而是表明,只有通过学习局部可观察到的期望值,才能有效地制定平衡状态。我们通过准备两个说明性示例来演示我们的方法:在不可综合系统中的Gibbs合奏和可集成系统中的广义Gibbs合奏。仅根据局部可观察物制备的纯状态在数值上显示出成功编码平衡状态的宏观特性。此外,我们发现有关系统大小的制备误差对Gibbs集团的衰减,而对于广义Gibbs集团而言,这与多项式衰减,这与热力学集合中的有限尺寸波动一致。我们的方法铺平了研究量子硬件中量子多体系统的热力学和统计特性的途径。

We propose a method based on deep reinforcement learning that efficiently prepares a quantum many-body pure state in thermal or prethermal equilibrium. The main physical intuition underlying the method is that the information on the equilibrium states can be efficiently encoded/extracted by focusing on only a few local observables, relying on the typicality of equilibrium states. Instead of resorting to the expensive preparation protocol that adopts global features such as the quantum state fidelity, we show that the equilibrium states can be efficiently prepared only by learning the expectation values of local observables. We demonstrate our method by preparing two illustrative examples: Gibbs ensembles in non-integrable systems and generalized Gibbs ensembles in integrable systems. Pure states prepared solely from local observables are numerically shown to successfully encode the macroscopic properties of the equilibrium states. Furthermore, we find that the preparation errors, with respect to the system size, decay exponentially for Gibbs ensembles and polynomially for generalized Gibbs ensembles, which are in agreement with the finite-size fluctuation within thermodynamic ensembles. Our method paves a path toward studying the thermodynamic and statistical properties of quantum many-body systems in quantum hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源