论文标题

定量可视化两分数据集

Quantitatively visualizing bipartite datasets

论文作者

Einav, Tal, Khoo, Yuehaw, Singer, Amit

论文摘要

随着实验的规模和范围的不断增加,随后的分析的基本挑战是将大量信息重新塑造为直观且易于介入的形式。通常,每个测量值仅传达一对条目之间的关系,并且很难在数据集中整合这些局部交互以形成凝聚力的全局图片。经典的本地化问题解决了这个问题,将局部测量结果转换为全球地图,揭示了系统的基础结构。在这里,我们研究了更具挑战性的两分性定位问题,其中成对距离仅用于包括两类条目(例如抗体 - 病毒相互作用,药物细胞效力或用户评价配置文件)的两类数据。我们修改了以前的算法来求解双分部分的定位,并检查每种方法在存在噪声,离群值和部分观察到的数据中的行为。作为概念证明,我们将这些算法应用于抗体 - 病毒中和测量测量以创建抗体行为的基集,形式化某些病毒的有效抑制程度如何弱抑制其他病毒,并量化抗体组合的频率频率表现出分性行为。

As experiments continue to increase in size and scope, a fundamental challenge of subsequent analyses is to recast the wealth of information into an intuitive and readily-interpretable form. Often, each measurement only conveys the relationship between a pair of entries, and it is difficult to integrate these local interactions across a dataset to form a cohesive global picture. The classic localization problem tackles this question, transforming local measurements into a global map that reveals the underlying structure of a system. Here, we examine the more challenging bipartite localization problem, where pairwise distances are only available for bipartite data comprising two classes of entries (such as antibody-virus interactions, drug-cell potency, or user-rating profiles). We modify previous algorithms to solve bipartite localization and examine how each method behaves in the presence of noise, outliers, and partially-observed data. As a proof of concept, we apply these algorithms to antibody-virus neutralization measurements to create a basis set of antibody behaviors, formalize how potently inhibiting some viruses necessitates weakly inhibiting other viruses, and quantify how often combinations of antibodies exhibit degenerate behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源