论文标题

通过声子散射缓解超导Qubits中的准粒子损失

Mitigation of quasiparticle loss in superconducting qubits by phonon scattering

论文作者

Bargerbos, Arno, Splitthoff, Lukas Johannes, Pita-Vidal, Marta, Wesdorp, Jaap J., Liu, Yu, Krogstrup, Peter, Kouwenhoven, Leo P., Andersen, Christian Kraglund, Grünhaupt, Lukas

论文摘要

量子误差校正将是实现易断层量子计算的重要成分。但是,大多数校正方案都取决于以下假设:错误在空间和时间上是不相关的。在超导码头中,在存在电离辐射的情况下,这种假设彻底违反了,这会在底物中产生高能声子爆发。这些声子可以在超导体中打破库珀对,因此可以在大面积上产生准颗粒,因此以相关的方式降低了量子设备的量子相干性。潜在的缓解技术是将大量正常或超导金属放在设备上,能够将声子能量减少到量子的超导间隙以下。为了研究这种方法的有效性,我们用四个名义上相同的基于纳米线的transmon量子台制造了一个量子设备。在设备上,一半的氮化物氮化物地面平面被铝(AL)取代,铝(AL)的间隙明显较低。我们确定性地将高能声子注入底物中,通过电压偏置偏分离的约瑟夫森连接。在存在低间隙材料的情况下,我们发现在注射依赖性的量子寿命中降解的因子降低了2-5,并且观察到不受欢迎的激发Qubit状态种群会被类似因素降低。此外,我们将使用磁场转动AL正常状态,发现声子保护没有变化。这表明我们设备中保护的功效不受AL接地平面中超导间隙的大小的限制。我们的结果为保护超导量子处理器免受离子化辐射的相关误差提供了有前途的基础。

Quantum error correction will be an essential ingredient in realizing fault-tolerant quantum computing. However, most correction schemes rely on the assumption that errors are sufficiently uncorrelated in space and time. In superconducting qubits this assumption is drastically violated in the presence of ionizing radiation, which creates bursts of high energy phonons in the substrate. These phonons can break Cooper-pairs in the superconductor and, thus, create quasiparticles over large areas, consequently reducing qubit coherence across the quantum device in a correlated fashion. A potential mitigation technique is to place large volumes of normal or superconducting metal on the device, capable of reducing the phonon energy to below the superconducting gap of the qubits. To investigate the effectiveness of this method we fabricate a quantum device with four nominally identical nanowire-based transmon qubits. On the device, half of the niobium-titanium-nitride ground plane is replaced with aluminum (Al), which has a significantly lower superconducting gap. We deterministically inject high energy phonons into the substrate by voltage biasing a galvanically isolated Josephson junction. In the presence of the low gap material, we find a factor of 2-5 less degradation in the injection-dependent qubit lifetimes, and observe that undesired excited qubit state population is mitigated by a similar factor. We furthermore turn the Al normal with a magnetic field, finding no change in the phonon-protection. This suggests that the efficacy of the protection in our device is not limited by the size of the superconducting gap in the Al ground plane. Our results provide a promising foundation for protecting superconducting qubit processors against correlated errors from ionizing radiation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源