论文标题
$ \ MATHCAL {N} = 2 $ $ \ MATHBF {E} $ - 理论:数值计算和大$λ$扩展的平面限制
The planar limit of the $\mathcal{N} = 2$ $\mathbf{E}$-theory: numerical calculations and the large $λ$ expansion
论文作者
论文摘要
我们研究本地运营商和Wilson Loop期望值的相关函数在4D $ \ MATHCAL {n} = 2 $ SUPERCORN -SUPERCORN -SU}(\ rm SU}(n)$ YM理论中具有超大型理论的对称和抗矛盾表示。这个所谓的$ \ mathbf {e} $理论与$ \ mathcal {n} = 4 $ sym紧密相关,并根据$ \ mathbb {z} _2 $ orientifold的ads $ _5 \ _5 \ times s^5 $。使用基于超对称定位的最新矩阵模型结果,我们开发了有效的数值方法来计算某些单个痕量运算符的两点和三点函数,以及1/2-BPS Wilson Loop期望值作为't Hooft耦合$λ$的函数。我们使用数值结果来得出这些相关器的简单分析表达式,最多可在$λ^{ - 1/2} $强耦合扩展中获得第六阶。这些结果为$α'$校正提供了明确的字段理论预测,以对ADS $ _5 \ times s^5/\ mathbb {z} _2 _2 $ orientifold上的IIB字符串理论的超级近似。
We study correlation functions of local operators and Wilson loop expectation values in the planar limit of a 4d $\mathcal{N}=2$ superconformal ${\rm SU}(N)$ YM theory with hypermultiplets in the symmetric and antisymmetric representations of the gauge group. This so-called $\mathbf{E}$ theory is closely related to $\mathcal{N}=4$ SYM and has a holographic description in terms of a $\mathbb{Z}_2$ orientifold of AdS$_5\times S^5$. Using recent matrix model results based on supersymmetric localization we develop efficient numerical methods to calculate two- and three-point functions of certain single trace operators as well as 1/2-BPS Wilson loop expectation values as a function of the 't Hooft coupling $λ$. We use our numerical results to arrive at simple analytic expressions for these correlators valid up to the sixth order in the $λ^{-1/2}$ strong coupling expansion. These results provide explicit field theory predictions for the $α'$ corrections to the supergravity approximation of type IIB string theory on the AdS$_5\times S^5/\mathbb{Z}_2$ orientifold.