论文标题
混沌散射幅度的量度
Measure for chaotic scattering amplitudes
论文作者
论文摘要
我们提出了一种新颖的混乱散射幅度量度。它采用比率的对数正态分布函数的形式$ r_n = {δ_n}/{Δ_{n+1}} $(连续)间隔的$Δ_n$之间的两个(连续)散射幅度的峰。我们表明,同一度量适用于泄漏的圆环上的量子机械散射以及高度激发的弦态腐烂到两个tachyons。相当明显的是,$ r_n $遵守控制Riemann Zeta功能的非平凡零的分布。
We propose a novel measure of chaotic scattering amplitudes. It takes the form of a log-normal distribution function for the ratios $r_n={δ_n}/{δ_{n+1}}$ of (consecutive) spacings $δ_n$ between two (consecutive) peaks of the scattering amplitude. We show that the same measure applies to the quantum mechanical scattering on a leaky torus as well as to the decay of highly excited string states into two tachyons. Quite remarkably the $r_n$ obey the same distribution that governs the non-trivial zeros of Riemann zeta function.