论文标题
聚合微环境中脂质囊泡的多尺度动力学
Multiscale Dynamics of Lipid Vesicles in Polymeric Microenvironment
论文作者
论文摘要
了解生物膜与细胞外矩阵的动态和复杂相互作用在控制各种细胞行为和功能(从细胞粘附,生长到信号传导和分化)中起着至关重要的作用。对组织工程的极大兴趣使设计模仿天然细胞外微环境的拓扑和机械性能的聚合物支架成为可能。但是,一个基本问题仍然没有解决:也就是说,粘弹性细胞外环境如何修饰脂质膜的层次动力学。在这项工作中,我们使用了具有不同分子量的聚(乙二醇)(PEG)的水溶液来模仿细胞的粘性培养基和几乎单分散的UniLamellar DMPC DMPG DMPG DMPG脂质体作为膜模型。使用小角度X射线散射(SAX),动态光散射,温度调制差扫描量热法,散装流变学和荧光寿命光谱,我们研究了脂质体聚合物混合物的结构相位图和多尺度动力学。结果表明,在不同的长度和时间尺度上,聚合物链和磷脂双层之间存在前所未有的动态耦合。与无聚合物脂质体病例相比,在短链的情况下,脂质双层的微度直接受到整个链的弛豫的影响,从而导致双层中脂质的加速动力学。在宏观水平上,双层的凝胶向流体过渡导致聚合物脂质体溶液的显着热僵硬行为,可以通过脂质体的浓度和聚合物链长度来改变,聚合物链长度可以改变。
Understanding dynamic and complex interaction of biological membranes with extracellular matrices plays a crucial role in controlling a variety of cell behavior and functions, from cell adhesion and growth to signaling and differentiation. Tremendous interest in tissue engineering has made it possible to design polymeric scaffolds mimicking the topology and mechanical properties of the native extracellular microenvironment; however, a fundamental question remains unanswered: that is, how the viscoelastic extracellular environment modifies the hierarchical dynamics of lipid membranes. In this work, we used aqueous solutions of poly(ethylene glycol) (PEG) with different molecular weights to mimic the viscous medium of cells and nearly monodisperse unilamellar DMPC DMPG liposomes as a membrane model. Using small angle Xray scattering (SAXS), dynamic light scattering, temperature modulated differential scanning calorimetry, bulk rheology, and fluorescence lifetime spectroscopy, we investigated the structural phase map and multiscale dynamics of the liposome polymer mixtures. The results suggest an unprecedented dynamic coupling between polymer chains and phospholipid bilayers at different length and time scales. The microviscosity of the lipid bilayers is directly influenced by the relaxation of the whole chain, resulting in accelerated dynamics of lipids within the bilayers in the case of short chains compared to the polymer free liposome case. At the macroscopic level, the gel to fluid transition of the bilayers results in a remarkable thermal stiffening behavior of polymer liposome solutions that can be modified by the concentration of the liposomes and the polymer chain length.