论文标题
晶粒生长的行星形成区域的化学演化
Chemical evolution in planet-forming regions with growing grains
论文作者
论文摘要
[删节]行星及其大气是由原球门磁盘中的气体和固体物质建造的。在行星形成过程中,这种固体材料从较小的微米大小的晶粒到磁盘中的较大尺寸。我们的目标是假设时间依赖于时间依赖的晶粒生长和几种恒定的晶粒尺寸,对挥发性冰的组成演变进行建模。最先进的沃尔什化学动力学法规用于建模化学演化。该代码已升级以说明固体的随时间不断发展的尺寸。化学演化是在原星磁盘中平面中局部在四个不同半径上进行建模的,最多可达10myr。该演化是针对五个不同恒定晶粒尺寸的模型建模的,一个模型,其中晶粒尺寸根据适合磁盘中平面的晶粒生长模型随时间而变化。局部谷物生长,保存总晶粒质量和球形晶粒的假设,可减少可用于冰期反应的总晶面积面积。与化学方案相比,这些反应效率降低了这些反应效率,常规晶粒尺寸的选择为0.1 $μ$ m。具有谷物生长的建模化学演化会导致h $ _ {2} $ o冰的丰度增加。对于内部磁盘中的碳,谷物生长会导致CO GAS超过Co $ _ {2} $冰作为主要载体,而在外部磁盘中,Ch $ _ {4} $冰成为主要的载体。总体而言,与化学演化相比,晶粒演化模型采用的恒定晶粒尺寸几乎导致化学演化几乎相同的化学演化。因此,恒定的晶粒尺寸选择,尽管大于0.1 $μ$ m,因此在近似晶粒生长对化学演化的影响时可能是适当的简化。
[Abridged] Planets and their atmospheres are built from gas and solid material in protoplanetary disks. This solid material grows from smaller, micron-sized grains to larger sizes in the disks, during the process of planet formation. Our goal is to model the compositional evolution of volatile ices on grains of different sizes, assuming both time-dependent grain growth and several constant grain sizes. The state-of-the-art Walsh chemical kinetics code is utilised for modeling chemical evolution. This code has been upgraded to account for the time-evolving sizes of solids. Chemical evolution is modelled locally at four different radii in a protoplanetary disk midplane for up to 10Myr. The evolution is modelled for five different constant grain sizes, and one model where the grain size changes with time according to a grain growth model appropriate for the disk midplane. Local grain growth, with conservation of total grain mass and the assumption of spherical grains, acts to reduced the total grain-surface area that is available for ice-phase reactions. This reduces these reactions efficiency compared to a chemical scenario with a conventional grain-size choice of 0.1$μ$m. The modelled chemical evolution with grain growth leads to increased abundances of H$_{2}$O ice. For carbon in the inner disk, grain growth leads CO gas to overtake CO$_{2}$ ice as dominant carrier, and in the outer disk, CH$_{4}$ ice to become the dominant carrier. Overall, a constant grain size adopted from a grain evolution model leads to almost identical chemical evolution, when compared with chemical evolution with evolving grain sizes. A constant grain size choice, albeit larger than 0.1$μ$m, may therefore be an appropriate simplification when approximating the impact of grain growth on chemical evolution.