论文标题
实际代数约旦曲线和伯格曼内核的真实代数几何形状
Real algebraic geometry of real algebraic Jordan curves in the plane and the Bergman kernel
论文作者
论文摘要
我们通过dirichlet to-neumann映射在平面中对某些代数约旦曲线的真实理性函数的限制空间,这是在曲线及其伯格曼内核界定的复杂平面上关联的。表征导致了这种有理功能的部分分数分解和描述这种约旦曲线的新方法。还探索了倍数连接的情况。
We characterize the space of restrictions of real rational functions to certain algebraic Jordan curves in the plane via the Dirichlet-to-Neumann map associated to the domain in the complex plane bounded by the curve and its Bergman kernel. The characterization leads to a partial fractions-like decomposition for such rational functions and new ways to describe such Jordan curves. The multiply connected case is also explored.