论文标题

卓越作为线性约束逆放射治疗计划的新型策略

Superiorization as a novel strategy for linearly constrained inverse radiotherapy treatment planning

论文作者

Barkmann, Florian, Censor, Yair, Wahl, Niklas

论文摘要

我们将优越的方法应用于强度调节的放射治疗(IMRT)治疗计划问题。在优越性中,线性体素剂量不等式约束是基本建模工具,在该工具中,寻求可行性的投影算法将寻求可行的观点。然后将该算法用梯度下降步骤扰动,以减少非线性目标函数。在开源逆计划工具包Matrad中,我们使用完善的Agmon,Motzkin和Schoenberg(AMS)寻求可行性的投影投影算法和常见的非线性剂量优化目标函数来实现典型的算法框架来进行优越。基于此原型,我们将优越性应用于强度调节的放射治疗治疗计划,并将其性能与寻求可行性和非线性约束优化进行比较。为了进行这些比较,我们使用TG119水幻影和Cort数据集的头颈患者。与AMS相比,寻求可行性的可行性证实了先前的研究,表明它可以找到与确定的最小二乘优化方法相当的解决方案。卓越原型解决了线性约束的计划问题,其性能与通用非线性约束优化器的性能相似,同时在约束接近和降低目标函数降低中显示平滑收敛。卓越是放射疗法反向治疗计划中受约束优化的有用替代方法。以其他寻求可行性的方法的扩展,例如,使用剂量 - 量的限制和更复杂的扰动,可能会解锁其全部潜力,以实现高性能的反相反治疗计划。

We apply the superiorization methodology to the intensity-modulated radiation therapy (IMRT) treatment planning problem. In superiorization, linear voxel dose inequality constraints are the fundamental modeling tool within which a feasibility-seeking projection algorithm will seek a feasible point. This algorithm is then perturbed with gradient descent steps to reduce a nonlinear objective function. Within the open-source inverse planning toolkit matRad, we implement a prototypical algorithmic framework for superiorization using the well-established Agmon, Motzkin, and Schoenberg (AMS) feasibility-seeking projection algorithm and common nonlinear dose optimization objective functions. Based on this prototype, we apply superiorization to intensity-modulated radiation therapy treatment planning and compare its performance with feasibility-seeking and nonlinear constrained optimization. For these comparisons, we use the TG119 water phantom and a head-and-neck patient of the CORT dataset. Bare feasibility-seeking with AMS confirms previous studies, showing it can find solutions that are nearly equivalent to those found by the established piece-wise least-squares optimization approach. The superiorization prototype solved the linearly constrained planning problem with similar performance to that of a general-purpose nonlinear constrained optimizer while showing smooth convergence in both constraint proximity and objective function reduction. Superiorization is a useful alternative to constrained optimization in radiotherapy inverse treatment planning. Future extensions with other approaches to feasibility-seeking, e.g., with dose-volume constraints and more sophisticated perturbations, may unlock its full potential for high-performant inverse treatment planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源