论文标题

使用量子最佳控制增强锶原子干涉法

Enhancing strontium clock atom interferometry using quantum optimal control

论文作者

Chen, Zilin, Louie, Garrett, Wang, Yiping, Deshpande, Tejas, Kovachy, Tim

论文摘要

锶时钟原子干涉法是一种有希望的新技术,开发了多个实验,以探索其暗物质和重力波检测的潜力。在这些探测器中,必须使用许多激光脉冲的序列进行大动量转移(LMT),因此每个脉冲的高忠诚度很重要,因为小不忠化受到了放大。量子最佳控制(QOC)是开发控制脉冲波形的框架,这些脉冲波形可实现高忠诚度并与实验缺陷相对强大。与基于遥不可及的两光子拉曼或布拉格过渡的更具成熟的原子干涉方法相比,使用锶的狭窄时钟过渡的谐振单光子转变涉及显着不同的量子动力学,这在应用QOC时会带来新的机会和挑战。在这里,我们研究了锶时钟干涉测量法的QOC脉冲,并证明了它们比基本方形脉冲(原始脉冲)和复合脉冲的优势,并以对多个噪声通道的鲁棒性来证明它们的优势。这可以改善SR时钟干涉仪中大动量转移的规模,从而为实现这些科学目标铺平了道路。

Strontium clock atom interferometry is a promising new technique, with multiple experiments under development to explore its potential for dark matter and gravitational wave detection. In these detectors, large momentum transfer (LMT) using sequences of many laser pulses is necessary, and thus high fidelity of each pulse is important since small infidelities become magnified. Quantum Optimal Control (QOC) is a framework for developing control pulse waveforms that achieve high fidelity and are robust against experimental imperfections. Resonant single-photon transitions using the narrow clock transition of strontium involve significantly different quantum dynamics than more established atom interferometry methods based on far-detuned two-photon Raman or Bragg transitions, which leads to new opportunities and challenges when applying QOC. Here, we study QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square pulses (primitive pulses) and composite pulses in terms of robustness against multiple noise channels. This could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieve these scientific goals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源