论文标题

重建结构指纹的原子结构

Atomic structure generation from reconstructing structural fingerprints

论文作者

Fung, Victor, Jia, Shuyi, Zhang, Jiaxin, Bi, Sirui, Yin, Junqi, Ganesh, P.

论文摘要

数据驱动的机器学习方法有可能显着加速材料设计的速率,而不是传统的人类指导方法。这些方法将有助于识别或在生成模型的情况下,甚至可以创建具有一组指定功能特性的新型材料结构,然后在实验室中合成或隔离。对于晶体结构的产生,关键的瓶颈在于为机器学习模型开发合适的原子结构指纹或表示,类似于分子生成中使用的基于图或微笑的表示。但是,找到对翻译,旋转和排列不变的数据有效表示,而笛卡尔原子坐标仍然是可逆的,仍然是一个持续的挑战。在这里,我们通过采用现有的不可变形表示,并开发出一种算法来通过使用自动分化的基于梯度的优化来重建原子坐标,从而提出了一种替代方法。然后,这可以与生成机器学习模型结合起来,该模型在表示空间内生成新材料,而不是在数据范围内的笛卡尔空间中。在这项工作中,我们使用以原子为中心的对称函数来实现这种端到端的结构生成方法,作为表示和条件变化自动编码器作为生成模型。我们能够成功地生成亚纳米PT纳米颗粒的新颖和有效的原子结构,作为概念证明。此外,该方法可以很容易地扩展到任何合适的结构表示形式,从而为基于结构的生成提供了一个强大的,可推广的框架。

Data-driven machine learning methods have the potential to dramatically accelerate the rate of materials design over conventional human-guided approaches. These methods would help identify or, in the case of generative models, even create novel crystal structures of materials with a set of specified functional properties to then be synthesized or isolated in the laboratory. For crystal structure generation, a key bottleneck lies in developing suitable atomic structure fingerprints or representations for the machine learning model, analogous to the graph-based or SMILES representations used in molecular generation. However, finding data-efficient representations that are invariant to translations, rotations, and permutations, while remaining invertible to the Cartesian atomic coordinates remains an ongoing challenge. Here, we propose an alternative approach to this problem by taking existing non-invertible representations with the desired invariances and developing an algorithm to reconstruct the atomic coordinates through gradient-based optimization using automatic differentiation. This can then be coupled to a generative machine learning model which generates new materials within the representation space, rather than in the data-inefficient Cartesian space. In this work, we implement this end-to-end structure generation approach using atom-centered symmetry functions as the representation and conditional variational autoencoders as the generative model. We are able to successfully generate novel and valid atomic structures of sub-nanometer Pt nanoparticles as a proof of concept. Furthermore, this method can be readily extended to any suitable structural representation, thereby providing a powerful, generalizable framework towards structure-based generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源