论文标题
GAIA:图形神经网络,具有暂时转移的注意力,以实现电子商务中的总商品预测
Gaia: Graph Neural Network with Temporal Shift aware Attention for Gross Merchandise Value Forecast in E-commerce
论文作者
论文摘要
电子商务在通过互联网增强商人的能力方面已有很长的路要走。为了有效地存储商品并正确安排营销资源,对他们来说,进行准确的总商品价值(GMV)预测非常重要。但是,通过数字化数据的不足进行准确的预测是不平凡的。在本文中,我们提出了一个解决方案,以更好地预测Apay应用程序内的GMV。多亏了Graph Neural网络(GNN),该网络具有很高的能力,可以将不同的实体相关联以丰富信息,我们提出了Gaia,Gaia是一个图形神经网络(GNN)模型,具有时间变化。 Gaia利用相关的电子销售商的销售信息,并根据时间依赖性学习邻居相关性。通过测试Apleay的真实数据集并与其他基线进行比较,Gaia表现出最佳性能。盖亚(Gaia)部署在模拟的在线环境中,与基线相比,这也取得了很大的进步。
E-commerce has gone a long way in empowering merchants through the internet. In order to store the goods efficiently and arrange the marketing resource properly, it is important for them to make the accurate gross merchandise value (GMV) prediction. However, it's nontrivial to make accurate prediction with the deficiency of digitized data. In this article, we present a solution to better forecast GMV inside Alipay app. Thanks to graph neural networks (GNN) which has great ability to correlate different entities to enrich information, we propose Gaia, a graph neural network (GNN) model with temporal shift aware attention. Gaia leverages the relevant e-seller' sales information and learn neighbor correlation based on temporal dependencies. By testing on Alipay's real dataset and comparing with other baselines, Gaia has shown the best performance. And Gaia is deployed in the simulated online environment, which also achieves great improvement compared with baselines.