论文标题
在有限的间隔内与指数系统的系统生物表达
Systems biorthogonal to exponential systems on a finite union of intervals
论文作者
论文摘要
我们研究了系统生物联管系统对$ l^2(e)$的完整且最小的指数系统的特性,其中$ e $是一个间隔的有限结合,并表明,在$ e $的情况下,$ e $是两个或三个间隔的结合,也可以完成。
We study the properties of a system biorthogonal to a complete and minimal system of exponentials in $L^2(E)$, where $E$ is a finite union of intervals, and show that in the case when $E$ is a union of two or three intervals the biorthogonal system is also complete.