论文标题
典型的学位图13 15 17 18 21 22的代数表面
Algebraic surfaces with canonical map of degree 13 15 17 18 21 22
论文作者
论文摘要
在本说明中,我们构建了一些通用类型的最小平滑表面,其规范地图$ 13、15、17、18、21、22 $。这些表面被构造为$ \ mathbb {z} _ {3}^2 $ -Covers $ \ mathbb {p}^1 \ times \ times \ times \ mathbb {p}^1 $。
In this note, we construct some minimal smooth surfaces of general type with canonical map of degree $ 13, 15, 17, 18, 21, 22 $. These surfaces are constructed as $ \mathbb{Z}_{3}^2$-covers of a blow-up of $ \mathbb{P}^1 \times \mathbb{P}^1 $.