论文标题
双函数的双函数定理和严格的张量产品,用于双重功能的双重类别
Bifunctor Theorem and strictification tensor product for double categories with lax double functors
论文作者
论文摘要
我们介绍了$ dbl^{st} _ {lx} $的内HOM的候选人,严格的双类别类别和LAX Double Double Foundors的类别,并将Lax Double Double Foundor表征到获得LAX Double Quasi punctor中。后者由一对宽松的双函子和四个类似于分配定律的宽松双函子组成。我们将此特征扩展到2类同构$ q \ x \ lax_ {hop}(\ aa \ times \ bb,\ cc)\ iso \ iSo \ lax_ {hop}(\ aa,\ aa,\ llbracket \ bb,\ bb,\ bb,\ cc \ rrbrabracket)$。我们表明,我们在$ dbl^{st} _ {lx} $中而不是灰色单型产品中,我们获得了一种限制Lax Double Quasi-functors的产品。我们证明了一个双肢定理,通过该定理,某些类型的松弛双准函数会产生笛卡尔产品上的Lax Double Foundor,将其扩展到2个函数$ q \ x \ lax_ {hop}^{ns}(\ aa \ times \ bb,\ cc)\ to \ lax_ {hop}(\ aa \ aa \ times \ times \ bb,\ cc)$,并显示如何限制biequivalence。研究(联合国)咖喱2个功能。我们证明,来自Trivial Double类别的Lax Double Foundor是Codomain Double类别中的单元,并证明我们的上述2函数以$ q \ x \ x \ x \ lax_ {hop}(*\ times*,\ dd)\ to \ lax_ \ to \ lax_ {hop}(hop}(*,\ dd)$恢复$ \ comp(\ hh(\ dd)):\ mnd \ mnd(\ hh(\ dd))\ to \ mnd(\ hh(\ dd))$ \ comp $ \ comp $ the Street引入的$ \ comp $,在$ \ hh(\ dd)$是$ \ hh(\ dd)的情况
We introduce a candidate for the inner hom for $Dbl^{st}_{lx}$, the category of strict double categories and lax double functors, and characterize a lax double functor into it obtaining a lax double quasi-functor. The latter consists of a pair of lax double functors with four 2-cells resembling distributive laws. We extend this characterization to a 2-category isomorphism $q\x\Lax_{hop}(\Aa\times\Bb,\Cc) \iso \Lax_{hop}(\Aa, \llbracket\Bb,\Cc\rrbracket)$. We show that instead of a Gray monoidal product in $Dbl^{st}_{lx}$ we obtain a product that in a sense strictifies lax double quasi-functors. We prove a bifunctor theorem by which certain type of lax double quasi-functors give rise to lax double functors on the Cartesian product, extend it to a 2-functor $q\x\Lax_{hop}^{ns}(\Aa\times\Bb,\Cc)\to\Lax_{hop}(\Aa\times\Bb,\Cc)$ and show how it restricts to a biequivalence. The (un)currying 2-functors are studied. We prove that a lax double functor from the trivial double category is a monad in the codomain double category, and show that our above 2-functor in the form $q\x\Lax_{hop}(*\times *,\Dd)\to\Lax_{hop}(*,\Dd)$ recovers the specification $\Comp(\HH(\Dd)):\Mnd\Mnd(\HH(\Dd))\to\Mnd(\HH(\Dd))$ of the natural transformation $\Comp$ introduced by Street, where $\HH(\Dd)$ is the horizontal 2-category of $\Dd$.