论文标题
轻巧且逐渐估计的语义细分网络
Lightweight and Progressively-Scalable Networks for Semantic Segmentation
论文作者
论文摘要
多尺度学习框架已被视为一种能够提高语义分割的能力类别。然而,这个问题并不是微不足道的,尤其是对于现实世界的部署,通常需要高效率推理潜伏期。在本文中,我们彻底分析了卷积块的设计(卷积类型和卷积中的频道数量),以及跨多个尺度的相互作用方式,所有这些都是从轻量级的语义分割的角度来看。通过这样的深入比较,我们综述了三个原则,因此设计了轻巧且逐渐估计的网络(LPS-NET),这些网络以贪婪的方式在新颖地扩大了网络复杂性。从技术上讲,LPS-NET首先利用了建立小型网络的原则。然后,LPS-NET通过扩展单个维度(卷积块的数量,通道数量或输入分辨率)来逐步扩展到较大网络,以实现最佳速度/准确性交易。在三个数据集上进行的广泛实验始终证明了LPS-NET优于几种有效的语义分割方法。更值得注意的是,我们的LPS-NET在CityScapes测试套装上达到73.4%MIOU,NVIDIA GTX 1080TI的速度为413.5fps,导致绩效提高1.5%,对最先进的STDC的速度提高了65%。代码可在\ url {https://github.com/yihengzhang-cv/lps-net}中获得。
Multi-scale learning frameworks have been regarded as a capable class of models to boost semantic segmentation. The problem nevertheless is not trivial especially for the real-world deployments, which often demand high efficiency in inference latency. In this paper, we thoroughly analyze the design of convolutional blocks (the type of convolutions and the number of channels in convolutions), and the ways of interactions across multiple scales, all from lightweight standpoint for semantic segmentation. With such in-depth comparisons, we conclude three principles, and accordingly devise Lightweight and Progressively-Scalable Networks (LPS-Net) that novelly expands the network complexity in a greedy manner. Technically, LPS-Net first capitalizes on the principles to build a tiny network. Then, LPS-Net progressively scales the tiny network to larger ones by expanding a single dimension (the number of convolutional blocks, the number of channels, or the input resolution) at one time to meet the best speed/accuracy tradeoff. Extensive experiments conducted on three datasets consistently demonstrate the superiority of LPS-Net over several efficient semantic segmentation methods. More remarkably, our LPS-Net achieves 73.4% mIoU on Cityscapes test set, with the speed of 413.5FPS on an NVIDIA GTX 1080Ti, leading to a performance improvement by 1.5% and a 65% speed-up against the state-of-the-art STDC. Code is available at \url{https://github.com/YihengZhang-CV/LPS-Net}.