论文标题

在随机不规则子图上

On random irregular subgraphs

论文作者

Fox, Jacob, Luo, Sammy, Pham, Huy Tuan

论文摘要

令$ g $为$ n $顶点上的$ d $ regratular图。 Frieze,Gould,Karoński和Pfender开始研究以下随机跨度型号$ H = H = H(G)$。在[0,1] $ in [0,1] $中独立分配给每个顶点$ v $ $ g $ a均匀的随机数$ x(v)\ in [0,1] $,而$ g $的边缘$(u,v)$是$ h $的边缘,仅当$ x(u)+x(u)+x(u)+x(v)\ geq 1 $。解决Alon和Wei的问题,我们证明,如果$ d = o(n/(\ log n)^{12})$,那么对于每个非负整数$ k \ leq d $,则有$(1+o(1+o(1))n/(d+1)n/(d+1)$ h $ h $ h $ h $ h $ h $ h $ h $ h $。

Let $G$ be a $d$-regular graph on $n$ vertices. Frieze, Gould, Karoński and Pfender began the study of the following random spanning subgraph model $H=H(G)$. Assign independently to each vertex $v$ of $G$ a uniform random number $x(v) \in [0,1]$, and an edge $(u,v)$ of $G$ is an edge of $H$ if and only if $x(u)+x(v) \geq 1$. Addressing a problem of Alon and Wei, we prove that if $d = o(n/(\log n)^{12})$, then with high probability, for each nonnegative integer $k \leq d$, there are $(1+o(1))n/(d+1)$ vertices of degree $k$ in $H$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源