论文标题
斐波那契链中多重纹理的实验性观察
Experimental Observation of Multifractality in Fibonacci Chains
论文作者
论文摘要
链的紧密结合模型遵循斐波那契序列,可以预测频谱和波形的多纹理。在实验上,我们通过具有高折射率指数($ε_r\ \ 45 $)的小型介电谐振器的链条的链条的圆柱形式实现了这种模型,这些圆柱形式表现出Evanescent耦合。我们表明,当该站点根据其当地周围的相似性(即它们的晶状体)重新排列时,最好理解测得的局部状态密度(LDO)的分形。这使我们能够针对两种占主导地位强和弱耦合的情况下的LDO推导简单的递归构造方案,尽管由于非零谐振宽度和尺寸约束,我们的分辨率有限。我们测量了波形的奇异性光谱和分形维度,并基于Quasiperiodic限制中的扰动描述,与理论预测良好的预测。
The tight-binding model for a chain, where the hopping constants follow a Fibonacci sequence, predicts multifractality in the spectrum and wavefunctions. Experimentally, we realize this model by chains of small dielectric resonators with high refractive index ($ε_r \approx 45$) of cylindrical form that exhibit evanescent coupling. We show that the fractality of the measured local density of state (LDOS) is best understood when the sites are rearranged according to the similarities in their local surrounding, i.e., their conumbers. This allows us to deduce simple recursive construction schemes for the LDOS for the two cases of dominant strong and weak coupling, despite our limited resolution due to non-zero resonance width and size constraints. We measure the singularity spectrum and the fractal dimensions of the wavefunctions and find good agreement with theoretical predictions for the multifractality based on a perturbative description in the quasiperiodic limit.