论文标题
具有标态曲率下边界的3个manifolds的体积增长
Volume growth of 3-manifolds with scalar curvature lower bounds
论文作者
论文摘要
我们提供了新的证据,证明了Munteanu的最新结果 - wang将标量曲率与体积增长有关,并以3美元的$ 3 $ manifold和非负RICCI曲率曲率。我们的证明依赖于Gromov引入的$μ$ bubbles的理论,以及由于cheeger-折叠而几乎分裂的定理。
We give a new proof of a recent result of Munteanu--Wang relating scalar curvature to volume growth on a $3$-manifold with non-negative Ricci curvature. Our proof relies on the theory of $μ$-bubbles introduced by Gromov as well as the almost splitting theorem due to Cheeger--Colding.