论文标题

具有标态曲率下边界的3个manifolds的体积增长

Volume growth of 3-manifolds with scalar curvature lower bounds

论文作者

Chodosh, Otis, Li, Chao, Stryker, Douglas

论文摘要

我们提供了新的证据,证明了Munteanu的最新结果 - wang将标量曲率与体积增长有关,并以3美元的$ 3 $ manifold和非负RICCI曲率曲率。我们的证明依赖于Gromov引入的$μ$ bubbles的理论,以及由于cheeger-折叠而几乎分裂的定理。

We give a new proof of a recent result of Munteanu--Wang relating scalar curvature to volume growth on a $3$-manifold with non-negative Ricci curvature. Our proof relies on the theory of $μ$-bubbles introduced by Gromov as well as the almost splitting theorem due to Cheeger--Colding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源