论文标题
共同点亚曼叶体积的变化公式
Variation formulae for the volume of coassociative submanifolds
论文作者
论文摘要
我们证明了以$ g_2 $数据表示的共同点子曼群体积的新变化公式。作为一种特殊情况,我们获得了第二个变体公式,以示于共同体亚策略的模量空间内的变化。该公式突出了环境扭转和RICCI曲率的作用。例如,这些结果适用于共同振动。我们用几个均质和非示例来说明我们的公式。
We prove new variation formulae for the volume of coassociative submanifolds, expressed in terms of $G_2$ data. As a special case, we obtain a second variation formula for variations within the moduli space of coassociative submanifolds; this formula highlights the role of the ambient torsion and Ricci curvature. These results apply, for example, to coassociative fibrations. We illustrate our formulae with several examples, both homogeneous and non.