论文标题

Wivelo:Wi-Fi被动跟踪的细粒度步行速度估计

WiVelo: Fine-grained Walking Velocity Estimation for Wi-Fi Passive Tracking

论文作者

Li, Chenning, Liu, Li, Cao, Zhichao, Zhang, Mi

论文摘要

在过去的十年中,通过Wi-Fi通过Wi-Fi进行的被动跟踪进行了广泛的研究。除了直接向前的锚点定位外,速度是推断用户轨迹的现有方法采用的另一个生命体征。但是,最新的Wi-Fi速度估计依赖于多普勒频率转移(DFS),该频率转移(DFS)受到不可避免的信号噪声产生的无限速度误差,进一步降低了跟踪准确性。在本文中,我们介绍了wivelo \ footNote {代码\&数据集,可在\ textit {https://github.com/liecn/wivelo \_secon22}}}}探索新的时空信号相关特征,从不同的安装室中观察到,以实现精确估计。首先,我们使用从通道状态信息(CSI)提取的子载波移位分布(SSD)分别定义两个相关特征,以分别进行方向和速度估计。然后,我们设计了一个由天线的位置计算得出的网格模型,以实现具有有界方向误差的细粒速度估计。最后,随着持续估计的速度,我们开发了一种端到端轨迹恢复算法,以减轻步行速度连续性的特性,以减轻速度异常值。我们在商品Wi-Fi硬件上实施Wivelo,并在各种环境中广泛评估其跟踪精度。实验结果表明,我们的中位数和90 \%的跟踪误差为0.47〜m和1.06〜m,是最新的一半和四分之一。

Passive human tracking via Wi-Fi has been researched broadly in the past decade. Besides straight-forward anchor point localization, velocity is another vital sign adopted by the existing approaches to infer user trajectory. However, state-of-the-art Wi-Fi velocity estimation relies on Doppler-Frequency-Shift (DFS) which suffers from the inevitable signal noise incurring unbounded velocity errors, further degrading the tracking accuracy. In this paper, we present WiVelo\footnote{Code\&datasets are available at \textit{https://github.com/liecn/WiVelo\_SECON22}} that explores new spatial-temporal signal correlation features observed from different antennas to achieve accurate velocity estimation. First, we use subcarrier shift distribution (SSD) extracted from channel state information (CSI) to define two correlation features for direction and speed estimation, separately. Then, we design a mesh model calculated by the antennas' locations to enable a fine-grained velocity estimation with bounded direction error. Finally, with the continuously estimated velocity, we develop an end-to-end trajectory recovery algorithm to mitigate velocity outliers with the property of walking velocity continuity. We implement WiVelo on commodity Wi-Fi hardware and extensively evaluate its tracking accuracy in various environments. The experimental results show our median and 90\% tracking errors are 0.47~m and 1.06~m, which are half and a quarter of state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源