论文标题
重新思考和重新标记的LIDC-IDRI用于鲁棒性肺癌预测
Re-thinking and Re-labeling LIDC-IDRI for Robust Pulmonary Cancer Prediction
论文作者
论文摘要
LIDC-IDRI数据库是肺癌预测的最流行的基准。但是,通过放射科医生的主观评估,LIDC中的结节可能与病理基础真理具有完全不同的恶性注释,引入了标签分配错误,并在培训期间引起了后续的监督偏见。因此,LIDC数据库需要更多的客观标签来基于学习的癌症预测。基于一个额外的小数据集,该数据集包含通过病理检查诊断的180个结节,我们建议重新标记LIDC数据,以减轻对此强大基准测试的原始注释偏差的影响。我们在本文中表明,基于公制学习的类似结节检索提供新标签将是一种有效的重新标记策略。对这些重新标记的LIDC结节进行的培训可改善模型性能,当添加不确定的结节的新标签时,这将增强。我们进一步推断,重新标记的LIDC是最终的良好肺癌预测方法的方便方法,同时构建大型病理预先证实的结节数据库提供了长期解决方案。
The LIDC-IDRI database is the most popular benchmark for lung cancer prediction. However, with subjective assessment from radiologists, nodules in LIDC may have entirely different malignancy annotations from the pathological ground truth, introducing label assignment errors and subsequent supervision bias during training. The LIDC database thus requires more objective labels for learning-based cancer prediction. Based on an extra small dataset containing 180 nodules diagnosed by pathological examination, we propose to re-label LIDC data to mitigate the effect of original annotation bias verified on this robust benchmark. We demonstrate in this paper that providing new labels by similar nodule retrieval based on metric learning would be an effective re-labeling strategy. Training on these re-labeled LIDC nodules leads to improved model performance, which is enhanced when new labels of uncertain nodules are added. We further infer that re-labeling LIDC is current an expedient way for robust lung cancer prediction while building a large pathological-proven nodule database provides the long-term solution.