论文标题
在数字量子计算机上模拟相互作用引起的手性拓扑动力学
Simulation of interaction-induced chiral topological dynamics on a digital quantum computer
论文作者
论文摘要
手性边缘状态是高度追求的,因为范式拓扑状态与量子信息处理和无耗散电子传输有关。使用超导体基于Transmon的量子计算机,我们证明了手性拓扑传播是由适当设计的相互作用而不是通量或旋转轨道耦合引起的。与常规2D实现不同,我们的有效Chern晶格是在较小的等效1D旋转链上实现的,其中纠缠了大门的序列封装了所需的时间反转破裂。通过利用平台的量子性质,我们避免了当今噪声中间尺度量子(NISQ) - 量子计算机中有限的量子数和门的保真度的困难,为在非常快速开发的量子硬件上更复杂的拓扑状态的量子模拟铺平了道路。
Chiral edge states are highly sought-after as paradigmatic topological states relevant to both quantum information processing and dissipationless electron transport. Using superconducting transmon-based quantum computers, we demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling. Also different from conventional 2D realizations, our effective Chern lattice is implemented on a much smaller equivalent 1D spin chain, with sequences of entangling gates encapsulating the required time-reversal breaking. By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers, paving the way for the quantum simulation of more sophisticated topological states on very rapidly developing quantum hardware.