论文标题
一种机器学习方法来增强色素观测
A Machine Learning Approach to Enhancing eROSITA Observations
论文作者
论文摘要
2019年推出的Erosita X射线望远镜预计将观察到大约100,000个星系群。例如,需要从钱德拉(Chandra)对这些集群的后续观察,以解决有关星系集群物理学的出色问题。深度chandra群集的观察很昂贵,每个燕麦群的随访都是不可行的,因此,必须小心选择选择进行后续的物体。为了解决这个问题,我们开发了一种算法,用于预测基于模拟的Orosita观察的持续时间更长的无背景观察。我们利用流体动力学宇宙学模拟磁性,使用六TE模拟了陶器仪器条件,并应用了一种新型的卷积神经网络来输出我们模拟样本中每个群集的深度chandra样的“超级观察”。任何后续功绩评估工具都应考虑到特定用例的设计;我们的模型产生的观察结果准确,精确地重现了簇形态,这是确定簇动态状态和核心类型的关键要素。我们的模型将通过改善后续选择来提高我们对星系簇的理解,并证明图像到图像深度学习算法是模拟现实的后续观察的可行方法。
The eROSITA X-ray telescope, launched in 2019, is predicted to observe roughly 100,000 galaxy clusters. Follow-up observations of these clusters from Chandra, for example, will be needed to resolve outstanding questions about galaxy cluster physics. Deep Chandra cluster observations are expensive and follow-up of every eROSITA cluster is infeasible, therefore, objects chosen for follow-up must be chosen with care. To address this, we have developed an algorithm for predicting longer duration, background-free observations based on mock eROSITA observations. We make use of the hydrodynamic cosmological simulation Magneticum, have simulated eROSITA instrument conditions using SIXTE, and have applied a novel convolutional neural network to output a deep Chandra-like "super observation" of each cluster in our simulation sample. Any follow-up merit assessment tool should be designed with a specific use case in mind; our model produces observations that accurately and precisely reproduce the cluster morphology, which is a critical ingredient for determining cluster dynamical state and core type. Our model will advance our understanding of galaxy clusters by improving follow-up selection and demonstrates that image-to-image deep learning algorithms are a viable method for simulating realistic follow-up observations.